|
chapter 2 [1] R. People and J.C. Bean, “Band alignments of coherently strained-GexSi1−x/Si heterostructures on <001> GeySi1−y substrates,” Appl. Phys. Lett., vol. 48, pp. 538-540, 1986. [2] O. Weber, F. Ducroquet, T. Ernst, F. Andrieu, J.-F. Damlencourt, J.-M. Hartmann, B. Guillaumot, A.-M. Papon, H. Dansas, L. Brévard, A. Toffoli, P. Besson, F. Martin, Y. Morand, and S. Deleonibus, “55 nm high mobility SiGe(:C) pMOSFETs with HfO2 gate dielectric and TiN metal gate for advanced CMOS,” in Symp. VLSI Tech. Dig., 2004, pp. 42-43. [3] J.-S. Goo, Q. Xiang, Y. Takamura, H. Wang, J. Pan, F. Arasnia, E.N. Paton, P. Besser, M. V. Sidorov, E. Adem, A. Lochtefeld, G. Braithwaite, M.T. Currie, R. Hammond, M.T. Bulsara, and M.-R. Lin, “Scalability of strained-Si nMOSFETs down to 25 nm gate length,” IEEE Electron. Device Lett., vol. 24, pp. 351-353, 2003. [4] T. Sanuki, A. Oishi,; Y. Morimasa, S. Aota, T. Kinoshita, R. Hasumi, Y. Takegawa, K. Isobe, H. Yoshimura, M. Iwai, K. Sunouchi, and T. Noguchi, “Scalability of strained silicon CMOSFET and high drive current enhancement in the 40 nm gate length technology,” in IEDM Tech. Dig., 2003, pp. 65-68. [5] K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong, “Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs,” in Symp. VLSI Tech. Dig., 2002, pp. 98-99. [6] D.J. Paul, “Si/SiGe heterostructures: From material and physics to devices and circuits,” Semicond. Sci. Technol., vol. 19, pp. R75–R108, 2004. [7] K. Misty, M. Armstrong, C. Auth, S. Cea’, T. Coan, T. Ghani, T. Hoffmann, A. Murthy, J. Sandford, R. Shaheed‘, K. Zawadzki, K. Zhang, S. Thompson and M. Bohr, “Delaying forever: uniaxial strained silicon transistors in a 90nm CMOS technology,” in Symp. VLSI Tech. Dig., 2004, pp. 50-51. [8] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald and D. A. Antoniadis, “Strained silicon MOSFET technology,” in IEDM Tech. Dig., 2002, pp. 23-26 [9] M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, “Six-band k•p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness,” J. Appl. Phys., vol. 94, pp. 1079-1095, 2003. [10] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS drive current reduction caused by transistor layout and trench isolation induced stress,” in IEDM Tech. Dig., 1999, pp. 827-830. [11] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement,” in IEDM Tech Dig., 2001, pp. 433—436. [12] A. Steegen, M. Stucchi, A. Lauwers, and K. Maex, “Silicide induced pattern density and orientation dependent transconductance in MOS transistors,” in IEDM Tech. Dig., 1999, pp. 497-500. [13] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” in IEDM Tech Dig., 2003, pp. 978-980. [14] H. Sayama, Y. Nishida, H. Oda, T. Oishi, S. Shimizu, T. Kunikiyo, K. Sonoda, Y. Inoue and M. Inuishi, “Effect of <100> Channel Direction for High Performance SCE Immune pMOSFET with Less Than 0.15pm Gate Length,” in IEDM Tech Dig., 1999, pp. 657-660. [15] C. C. Wu, Y. K. Leung, C. S. Chang, M. H. Tsai, H. T. Huang, D. W. Lin, Y. M. Sheu, C. H. Hsieh, W. J. Liang, L. K. Han, W. M. Chen, S. Z. Chang, S. Y. Wu, S. S. Lin, H. C. Lin, C. H. Wang, P. W. Wang, T. L. Lee, C. Y. Fu, C. W. Chang, S. C. Chen, S. M. Jang, S. L. Shue, H. T. Lin, Y. C. See, Y. J. Mii, C. H. Diaz, Burn J. Lin, M. S. Liang, Y. C. Sun, “A 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications,” in IEDM Tech Dig., 2002, pp. 65-68. [16] C. Canali, G. Ottaviani and A. Quaranta, “ Drift velocity of electrons and holes and associated anisotropic effects in Si,” J. Phys. Chem. Solids, vol. 32, pp. 1707-1720, 1971. [17] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex,” J. Appl. Phys., vol. 94, pp. 2590-2596, 2003. [18] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Y. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr,and Y. El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, pp. 1790-1797, 2004.
===========================================================
chapter 3 [1] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, ”Sub 50-nm FinFET: PMOS,” in IEDM Tech. Dig., 1999, pp. 67-70. [2] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, pp. 2320-2325, 2000. [3] J. Kedzierski, E. Nowak, T. Kanarsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Saunders, K. Wong, D. Canaperi, M. Krishnan, K. Lee, B. Rainey, D. Fried, P. Cottrell, H. Wong, M. Ieong, and W. Haensch, “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation,” in IEDM Tech. Dig., 2002, pp. 247-250. [4] X. Zheng, M. Pak, J. Huang, S. Choi, and K. L. Wang, “A vertical MOSFET with a leveling, surrounding gate fabricated on ananoscale island,” in Device Research Conf. Dig., 1998, pp. 70-71. [5] K. Mori, A. Duong, and William F. Richardson, “Sub-100-nm vertical MOSFET with threshold voltage adjustment,” IEEE Trans. Electron Devices, vol. 49, pp. 61-66, 2002. [6] M. Yang, C. L. Chang, M. Carroll, and J. C. Sturm, “25-nm p-channel vertical MOSFETs with SiGeC source-drains,” IEEE Electron Devices Lett., vol. 20, pp. 301-303, 1999. [7] T. Sato, Y. Takeishi, and H. Hara, “Mobility anisotropy of electrons in inversion layers on oxidized silicon surfaces,” Phys. Rev. B, vol. 4, pp. 1950-1960, 1971. [8] M. Kinugawa, M. Kakumu, T. Usami and J. Matsunaga, “Effects of silicon surface orientation on submicron CMOS devices,” in IEDM Tech. Dig., 1985, pp. 581-584. [9] H. S. Momose, T. Ohguro, S. Nakamura, Y. Toyoshima, H. Ishiuchi, and H. Iwai, “Ultrathin gate oxide CMOS on (111) surface-oriented Si substrate,” IEEE Trans. Electron Devices, vol. 49, pp. 1597-1605, 2002. [10] H. S. Momose, T. Ohguro, S. Nakamura, Y. Toyoshima, H. Ishiuchi, and H. Iwai, “Study of wafer orientation dependence on performance andreliability of CMOS with direct-tunneling gate oxide,“ in Symp. VLSI Tech. Dig., 2001, p. 77. [11] R. Ohba and T. Mizuno, “Nonstationary electron/hole transport in sub-0.1 μm MOS devices:correlation with mobility and low-power CMOS application,” IEEE Trans. Electron Devices, vol. 48, pp. 338-343, 2001. [12] T. Hatakeyama, K. Matsuzawa, and S. Takagi, “Impact of strained-Si channel on complementary metal oxide semiconductor circuit performance under the sub-100 nm regime,” Jpn. J. Appl. Phys., vol. 40, pp. 2627-2632, 2001. [13] T. Y. Lu and T. S. Chao, “Mobility enhancement in local strain channel nMOSFETs by stacked a-Si/poly-Si gate and capping nitride,” IEEE Electron Devices Lett. vol. 26, pp. 267-269, 2005. [14] J. B. Roldan and F. Gamiz, “Simulation and modeling of transport properties in strained-Si and strained-Si/SiGe-on-insulator MOSFETs,” Solid-State Electron., vol. 48, pp. 1347-1355, 2004. [15] G. Abstreiter, H. Brugger, and T. Wolf, “Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1-x superlattices,” Phys. Rev. Lett., vol. 54, pp. 2441-2444, 1985. [16] R. People, “Physics and application of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron, vol. 22, 1696-1710, 1986. [17] D. C. Tsui and G. Kaminsky, “Observation of sixfold valley degeneracy in electron inversion layers on Si(111),” Phys. Rev. Lett., vol. 42, pp. 595-597, 1979. [18] E. A. Irene, ”Residual stress in silicon nitride films,” J. Electron. Mater., vol. 5 pp. 287-298, 1976. [19] S. E. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” in IEDM Tech. Dig., 2004, pp. 221-224.
==========================================================
chapter 4 [1] K. Takasaki, K. Irino, T. Aoyama, Y. Momiyama, T. Nakanishi, Y. Tamura, and T. Ito, “Impact of nitrogen profile in gate nitrided-oxide on deep-submicron CMOS performance and reliability,” Fujitsu Sci. Tech. J., vol. 39, pp.40-51, 2003. [2] C. Lin, A. I. Chou, K. Kumar, P. Chowdhury, and J. C. Lee, “Leakage current, reliability characteristics, and boron penetrationof ultra-thin (32-36 Å) O2-oxides and N2O/NOoxynitrides,” in IEDM Tech. Dig., 1996, pp. 331-334. [3] T. Aoyama, S. Ohkubo, H. Tashiro, Y. Tada, K. Suzuki, and K. Horiuchi, “Boron diffusion in nitrided-oxide gate dielectrics leading to high suppression of boron penetration in P-MOSFETs,” Jpn J. Appl. Phys., vol. 37, pp. 1244-1250, 1998. [4] S. K. H. Fung, H. T. Huang, S. M. Cheng, K. L. Cheng, S. W. Wang, C. C. Wu, C. Y. Lin, S. J. Chang, S. Y. Wu, C. F. Nieh, C. C. Chen, T. L. Lee, Y. Jin, S. C. Chen, L. T. Lin, Y. H. Chiu, H. J. Tao, C. Y. Fu, S. M. Jang, K. F. Yu, C. H. Wang, T. C. Ong, Y. C. See, C. H. Diaz, M. S. Liang, and Y. C. Sun, “65nm CMOS high speed, general purpose and low power transistor technology for high volume foundry application,” in Symp. VLSI Tech. Dig., 2004, pp. 92-93. [5] Z. Luo, A. Steegen, M. Eller, R. Mann, C. Baiocco, P. Nguyen, L. Kim, M. Hoinkis, V. Ku, V. Klee, F. Jamin, P. Wrschka, P. Shafer, W. Lin, S. Fang, A. Ajmera, W. Tan, D. Park, R. MO, J. Lian, D. Vietzke, C. coppock, A. Vayshenker, T. Hook, V. Chan, K. Kim, A. Cowley, S. Kim, E. Kaltalioglu, B. Zhang, P. S. Marokkef, Y. Lin, K. Lee, H. Zhu, M. Weybright, R. Rengarajan, J. Ku, T. Schiml , J. Sudijono, I. Yang, and C. Wann, “High performance and low power transistors integrated in 65nm bulk CMOS technology,” in IEDM Tech. Dig., 2004, pp. 661-664. [6] Y. Nakaharam, T. Fukai, M. Togo, S. Koyama, H. Morikuni, T. Matsuda, K. Sakamoto, A. Mineji, S. Fujiwara, Y. Kunimune, M. Nagase, T. Tamura, N. Onoda, S. Miyake, Y. Yama, T. Kudoh, M. Ikeda, Y. Yamagata, T. Yamamoto, and K. Imai, “A robust 65-nm node CMOS technology for wide-range Vdd operation,” in IEDM Tech. Dig., 2003, pp. 281-284. [7] T. Yamamoto, K. Uwasawa, and T. Mogami, “Bias temperature instability in scaled p+ polysilicon gate p-MOSFET's,” IEEE Trans. Electron Devices, vol. 46, pp. 921-926, 1999. [8] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: road to cross in deep sunmicron silicon semiconductor manufacturing,” Appl. Phys. Rev., vol. 94, pp. 1-18, 2003. [9] B. S. Doyle and K. R. Mistry,“A lifetime prediction method for hot-carrier degradation insurface-channel p-MOS devices,” IEEE Trans. Electron Devices, vol. 37, pp. 1301-1307, 1995. [10] R. Woltjer, G. M. Paulzen, H. G. Pomp, H. Lifka, and P. H. Woerlee, “Three hot-carrier degradation mechanisms in deep-submicron PMOSFET's,” IEEE Trans. Electron Devices, vol. 42, pp.109-115, 1995. [11] J. F. Zhang and W. Eccleston, “Effects of high field injection on the hot carrier induced degradation of submicrometer pMOSFET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 1269-1276, 1995. [12] D. Writers, L. K. Han, T. Chen, H. H. Wang, D. L. Kwong, M. Allen, and J. Fulford, “Degradation of oxynitride gate dielectric reliability due to boron diffusion,” Appl. Phys. Lett., vol. 68, pp. 2094-2096, 1996. [13] K. Nimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C. T. Liu, R. C. Keller, and T. Horiuch, “NBTI enhancement by nitrogen incorporation into ultrathin gateoxide for 0.10-μm gate CMOS generation,” in Symp. VLSI Tech. Dig., 2000, pp. 92-93. [14] S. F. Ting, Y. K. Fang, C. H. Chen, C. W. Yang, W. T. Hsieh, J. J. Ho, M. C. Yu, S. M. Jang, C. H. Yu, M. S. Liang, S. Chen, and R. Shih, “The effect of remote plasma nitridation on the integrity of theultrathin gate dielectric films in 0.13 μm CMOS technology and beyond,” IEEE Electron Device Lett., vol. 22, pp. 327-329, 2001. [15] S. S. Tan, T. Chen, C. H. Ang, C. M. Lek, W. Lin, J. Zhen, A. See, and L. Chan, “Negative-bias-temperature-instability (NBTI) for p+-gate pMOSFET with ultra-thin plasma-nitrided gate dielectrics,” in Proc. Plasma- and Process-Induced Damage 7th Int. Symp., 2002, pp. 146-149. [16] Y. Mitani, “Influence of nitrogen in ultra-thin SiON on negative bias temperature instability under AC stress,” in IEDM Tech. Dig., 2004, pp.117-120. [17] Y. D. He, M. C. Xu, and C. G. Tan, “Effects of plasma nitridation on ultra-thin gate oxide electrical and reliability characteristics,” Solid-State Electron, vol. 49, pp.57-61, 2005. [18] A. Kamgar, J. T. Clemems, A. Ghetti, C. T. Liu, and E. J. Lloyd, ”Reduced electron mobility due to nitrogen implant prior to the gate oxide growth,” IEEE Electron Device Lett., vol. 21, pp. 227-229, 2000. [19] P. Heremans, J. Witters, G. Groeseneken, and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation,” IEEE Trans. Electron Devices, vol. 36, pp. 1318-1335, 1989. [20] S. S. Chung, H. J. Feng, Y. S. Hsieh, A. Liu, W. M. Lin, D. F. Chen, J. H. Ho, K. T. Huang, C. K. Yang, O. Cheng, Y. C. Sheng, D. Y. Wu, W. T. Shiau, S. C. Chien, K. Liao, and S. W. Sun, “Low leakage reliability characterization methodology for advanced CMOS with gate oxide in the 1nm range,” in IEDM Tech. Dig., 2004, pp. 477-480. [21] S. S. Tan, C. H. Ang, C. M. Lek, T. P. Chen, B. J. Cho, A. See, and L. Chan, “Characterization of ultrathin plasma nitrided gate dielectrics in pMOSFET for 0.18 μm technology and beyond,” in Proc. Physical and Failure Analysis of Integrated Circuits, IPFA 9th Int. Symp., 2002, p. 254. [22] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO2 (4-6 nm)-Si interfaces during negative-bias temperature aging,” J. Appl. Phys., vol. 77, pp. 1137-1148, 1995. [23] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-bulidup instability at the Si-SiO2 interface,” Phys. Rev. B, vol. 51, pp. 4218-4230, 1995. [24] R. Moazzami and C. Hu, “Stress-induced current in thin silicon dioxide films,” in IEDM Tech. Dig., 1992, pp. 139-142.
============================================================
chapter 5 [1] S. W. Huang, and J. G. Hwu, “Lateral Nonuniformity of Effective Oxide Charges in MOS Capacitors with Al2O3 Gate Dielectrics,” IEEE Trans. Electron Devices, vol. 53, pp. 1608-1614, 2006. [2] L. A. Ragnarsson, V. S. Chang, H. Y. Yu, H. J. Cho, T. Conard, K. M. Yin, A. Delabie, J. Swerts, T. Schram, S. D. Gendt, and S. Biesemans, “Achieving Conduction Band-Edge Effective Work Functions by La2O3 Capping of Hafnium Silicates,” IEEE Electron Device Lett., vol. 28, pp. 486-488, 2007. [3] C. S. Lai, W. C. Wu, T. S. Chao, J. H. Chen, J. C. Wang, L. L. Tay, and N. Rowell, “Suppression of Interfacial Reaction for HfO2 on Silicon by Pre-CF4 Plasma Treatment,” Appl. Phys. Lett., vol. 89, p. 072904, 2006. [4] C. S. Lai, W. C. Wu, J. C. Wang, and T. S. Chao, “Characteristics of Fluorine Implantation for HfO2 Gate Dielectrics with High-temperature Postdeposition Annealing ,” Jpn. J Appl. Phys., vol. 45, no. 4B, pp.2893-2897, 2005. [5] W. C. Wu, C. S. Lai, J. C. Wang, J. H. Chen, M. W. Ma, and T. S. Chao, “High-Performance HfO2 Gate Dielectrics Fluorinated by Postdeposition CF4 Plasma Treatment,” J. Electrochem. Soc., vol. 154, no. 7, pp.561-565, 2007. [6] X. Yu, M. Yu, and C. Zhu, “Advanced HfTaON/SiO2 Gate Stack With High Mobility and Low Leakage Current for Low-Standby-Power Application,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 498-501, 2006. [7] M. Cassé, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, and F. Boulanger, “Carrier Transport in HfO2/Metal Gate MOSFETs: Physical Insight Into Critical Parameters," IEEE Trans. Electron Devices, vol. 53, pp. 759-768, 2006. [8] C. S. Lai, W. C. Wu, J. C. Wang and T. S. Chao, “The Characterization of CF4 Plasma Fluorinated HfO2 Gate Dielectrics with TaN Metal Gate,” Appl. Phys. Lett. vol. 86, pp. 22905-22907, 2005. [9] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-k/metal gate stack and its MOSFET characteristics,” IEEE Electron Device Lett., vol. 25, no. 6, pp. 408-410, 2004. [10] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, pp. 1-18, 2003. [11] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (QSS) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, pp. 266-274, 1967. [12] N. Shiono and T. Yashiro, “Surface state formation during long-term bias-temperature stress aging of thin SiO2-Si interfaces,” Jpn. J. Appl. Phys., vol. 18, pp. 1087-1095, 1979. [13] K. Onishi, C. S. Kang, R. Choi, H.-J. Cho, S. Gopalan, R. Nieh, S. Krishnan, and J. C. Lee, “Charging effects on reliability of HfO2 devices with polysilicon gate electrode,” in Proc. IRPS, 2002, pp. 419-420. [14] J. F. Zhang and W. Eccleston, “Positive bias temperature instability in MOSFETs,” IEEE Trans. Electron Devices, vol. 45, pp. 116–124, Jan. 1998. [15] M. Bourcerie, B. S. Doyle, J.-C. Marchetaux, J.-C. Soret, and A. Boudou, “Relaxable damage in hot-carrier stressing of n-MOS transistors-oxide traps in the near interfacial region of the gate oxide,” IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 708–717, Mar. 1990. [16] W. T. Lu, P. C. Lin, T. Y. Huang, C. H. Chien, M. J. Yang, I. J. Huang, and P. Lehnen, “The characteristics of hole trapping in HfO2/SiO2 gate dielectrics with TiN gate electrode,” Appl. Phys. Lett., vol. 85, no. 16, pp. 3525–3527, Oct. 2004. [17] R. Degraeve, A. Kerber, P. Roussel, E. Cartier, T. Kauerauf, L. Pantisano, and G. Groeseneken, “Effect of bulk trap density on HfO2 reliability and yield,” in IEDM Tech. Dig., 2003, pp. 935–938. [18] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur and C. Parthasarathy, “Review of high-k dielectrics reliability issues,” IEEE Trans. Dev. Mat. Reliab. 2005, pp. 5–19. [19] S. Zafar, A. Callegari, E. Gusev and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, pp. 9298-9303, 2003. [20] B. H. Lee, J. H. Sim, R. Choi, G. Bersuker, K. Matthew, N. Moumen, J. Peterson and L. Larson, “Localized transient charging and it's implication on the hot carrier reliability of HfSiON MOSFETs,” in Proc. IRPS, 2004, pp. 691-692. [21] E. P. Gusev and C. P. D’Emic, “Charge detrapping in HfO2 high-k gate dielectric stacks,” Appl. Phys. Lett., vol. 83, pp. 5223-5225, 2003. [22] F. Crupi, R. Degraeve, A. kerber, D. H. Kwak and G. Groeseneken, “Correlation between Stress-Induced Leakage Current (SILC) and the HfO2 bulk trap density in a SiO2/HfO2 stack,” in Proc. IRPS, 2004, pp. 181-187. [23] J. S. Brugler and P. G. A. Jespers, “Charge pumping in MOS devices,” IEEE Trans. Electron Devices, vol. 16, , pp. 297-302, Mar. 1969. [24] S. M. Sze and Kwok K. Ng, Physics of semiconductor devices, 3rd edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007, ch. 6.
==========================================================
|