(3.239.33.139) 您好!臺灣時間:2021/03/02 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅文政
研究生(外文):Wen-Cheng Lo
論文名稱:先進金氧半場效電晶體閘極工程對改善元件特性及可靠度之研究
論文名稱(外文):Gate Engineering of Advanced MOSFETs for Device Performance and Reliability Improvement
指導教授:張俊彥趙天生
指導教授(外文):Chun-Yen ChangTien-Sheng Chao
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:130
中文關鍵詞:通道工程可靠度應力高介電係數介電層
外文關鍵詞:channel engineeringreliabilitystrainhigh-k dielectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們針對先進元件的閘極工程整合部分對特性及可靠度的改善進行研究,涵蓋的內容包括淺溝渠隔離(STI)所造成的區域性單向壓縮應力在<110>及<100>通道方向的比較;在(111)晶向基版上利用氮化矽覆蓋層來改善N型金氧半場效電晶體的特性;以電漿氮化氧化層或熱氮化氧化層使用在雙閘極氧化層厚度的P型金氧半場效電晶體上在負電壓溫度不穩定性及熱載子注入等可靠度之比較,以及元件使用以鉿為基本材料之高介電係數介電層在正電壓溫度不穩定性分析中捕捉/反捕捉電子的可靠度分析。
我們完整地研究了65奈米技術的P型金氧半場效電晶體在<110>及<100>通道方向上對主動區佈局的相依性以及淺溝渠隔離所造成的單向壓縮應力對其特性的影響。對65奈米的P型金氧半場效電晶體而言,當源/汲極長度從0.21微米增加到10微米,<100>通道方向在飽和汲極電流特性方面會比<110>通道的元件高出約從8 % 提高到15 %。再者,我們也證明了對於不管在通道長度或寬度方向來說,<100>通道的元件對硼的擴散有較高的抑制能力以及對淺溝渠隔離所造成的應力也有較低的感受度。
我們亦利用高應力之氮化矽覆蓋層以及非晶矽與多晶矽堆疊之閘極結構等區域應變通道技術在(111)晶向矽基版上製作出N型金氧半場效電晶體。當氧化矽覆蓋層或非晶矽層厚度增加時,元件的飽和電流及轉移電導也隨之上升。我們的實驗結果顯示相對於非晶矽厚度為20奈米的元件而言,非晶矽厚度為70奈米的元件在飽和電流方面有約6.7 %的改善;在轉移電導方面則有約10.2 %的增加。
此外,我們比較了使用電漿氮化氧化層及熱氮化氧化層兩種不同閘極介電層的核心與輸入/輸出之P型金氧半場效電晶體受到負電壓溫度不穩定性及熱載子注入等可靠度的影響。以電漿氮化氧化層作為閘極氧化層材料之P型金氧半場效電晶體在漂移率方面比熱氮化氧化層元件高了約30 %,定電壓過驅動電流的值也比熱氮化氧化層高了約23 %。相較於熱氮化氧化層,電漿氮化氧化層之核心P型金氧半場效電晶體因為在氧化層與矽基版界面有較低之氮的濃度,所以有較佳的負電壓溫度不穩定性及熱載子注入抵抗能力。然而,電漿氮化氧化層之輸入/輸出P型金氧半場效電晶體則表現出較高的熱載子注入造成的特性退化率因為其有較高的氧化層內的主體缺陷。不過對於操作在一般電壓之負電壓溫度不穩定性方面,仍是優於熱氮化氧化層歸因於較低的界面缺陷密度。
最後,我們論證了以二氧化鉿(HfO2)及鉿之氮氧化矽(HfSiON)兩種材料作為閘極氧化層的N型金氧半場效電晶體在正電壓溫度不穩定性可靠度的特性退化。對以鉿為基本材料之高介電係數介電層而言,在正電壓溫度不穩定性可靠度測試期間所產生的氧化層主體缺陷會主導元件的正電壓溫度不穩定性之特性退化。在正電壓溫度不穩定性可靠度測試中,較低的臨界啟始電壓退化以及氧化層主體缺陷產生率,證明了鉿之氮氧化矽的薄膜品質優於二氧化鉿。此外,在正電壓溫度不穩定性可靠度測試期間,相對於二氧化鉿介電層而言,鉿之氮氧化矽則有較淺的電荷捕捉能階。
In this dissertation, we investigated the gate engineering integration for advanced device performance and reliability improvement including the comparison of STI-induced local uniaxial compressive stress in <110>- and <100>-channel directions, the use of SiN capping layer on (111) orientation substrate to improve the NMOSFET performance, the reliability comparisons in negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) between dual gate oxide PMOSFETs using plasma nitrided oxide (PNO) and thermally nitrided oxide (TNO) and the positive-bias temperature instability (PBTI) trapping/de-trapping reliability issues for devices using Hf-based high-k dielectrics.
Active-region layout dependence and STI-induced uniaxial compressive stress impact on the performance of 65 nm technology PMOSFETs with <110>- and <100>-channel directions were fully investigated. For 65 nm PMOSFET, <100>-channel show as higher as about 8 ~ 15% in Id_sat than <110>-channel devices as S/D length increased from 0.21 �慆 to 10 �慆. Furthermore, higher immunity to boron diffusion and less sensitivity on STI-induced strain in both of channel length and width directions for <100>-channel devices were also demonstrated.
We also investigated NMOSEFT fabricated with local strained channel techniques on a (111) Si substrate using a SiN capping layer with high mechanical stress and the stack gate of amorphous silicon (��-Si) and polycrystalline silicon (poly-Si). The on-current and transconductance (Gm) increased with increasing SiN capping layer or ��-Si layer thickness. Our experimental results show that devices with a 700 Š��-Si layer show a 6.7% on-current improvement percentage relative to those with a 200 Š��-Si layer, and a corresponding Gm improvement percentage of 10.2%.
Besides, we compared the effects of NBTI and HCI on the core and input/output (I/O) PMOSFET fabricated using the different gate dielectrics of PNO and TNO. The mobility and constant overdrive current of the PMOSFETs fabricated using PNO as a gate oxide material are about 30% and 23% higher than those of the devices fabricated using TNO, respectively. The core PMOSFETs fabricated using PNO show a better NBTI and HCI immunity than those fabricated using TNO owing to the lower nitrogen concentration at the SiO2/Si-substrate interface. However, the I/O PMOSFETs fabricated using PNO show a higher HCI-induced degradation rate because of a higher oxide bulk trap density but a better NBTI than the devices fabricated using TNO at a normal stressed bias due to a low interface trap density.
In the final part, PBTI degradation for HfO2 and HfSiON NMOSFETs with the metal gate electrode has been successfully demonstrated. The generated oxide trap during PBTI stress will dominate the PBTI characteristics for Hf-based gate dielectrics. The reduction of threshold voltage degradation and oxide trap generation under PBTI stress indicates that the HfSiON thin film quality is better than HfO2. In addition, as compared to HfO2 dielectrics, the HfSiON has shallower charge trapping level under PBTI stress.
Contents

Abstract (in Chinese) …i
Abstract (in English) ……………iii
Acknowledge (in Chinese) …………vi
Contents …………vii
Table Captions ……x
Figure Captions xi


Chapter 1 Introduction ……1

1-1 General background ……1
1-2 Motivation …6
1-3 Thesis outline …………9
1-4 References ………12


Chapter 2 Systematical Comparisons on Performance Improvement by STI-Induced Strain between <110>- and <100>- Channel Directions Sub-65 nm PMOSFETs……………23

2-1 Introduction ……………23
2-2 Experiment ……………25
2-3 Results and discussions.. 26
2-4 Summary …31
2-5 References. ……32


Chapter 3 Performance Enhancement by Local Strain in <110> Channel n-channel Metal-Oxide-Semiconductor Field-Effect Transistors on (111) Substrate 48

3-1 Introduction 48
3-2 Experiment …49
3-3 Results and discussions …51
3-3-1 Single-poly-Si gate structure with SiN capping layer of different thicknesses …………51
3-3-2 Stack of ��-Si and Poly-Si gate with SiN capping layer of fixed thickness 54
3-4 Summary …… 56
3-5 References ………57


Chapter 4 Systematical Study of Reliability Issues in Plasma-Nitrided and Thermally Nitrided Oxides for Advanced Dual-Gate Oxide PMOSFETs ………… 70

4-1 Introduction ……………70
4-2 Experiment …71
4-3 Results and discussions ……72
4-3-1 Material analysis and device performance of PNO and TNO PMOSFETs …………72
4-3-2 NBTI and HCI comparison between PNO and TNO..............74
4-3-3 Mechanism 77
4-4 Summary …80
4-5 References …………81


Chapter 5 The Comparisons of Trapping and De-trapping effects in Positive Bias Temperature Instability Stress between HfO2 and HfSiON Gate Dielectrics 98

5-1 Introduction ………98
5-2 Experiment ………………100
5-3 Results and discussions 101
5-3-1 Device performance ……101
5-3-2 PBTI degradation for HfO2 and HfSiON gate dielectrics…102
5-3-3 Temperature-dependent de-trapping characteristics for HfO2 and HfSiON gate dielectrics ………104
5-4 Summary …………106
5-5 References …107


Chapter 6 Conclusions and Recommendations for Future Study.124

6-1 Conclusions …………124
6-2 Suggestions for future work …………127


Vita (Chinese) 128
Publication list …129
chapter 2
[1] R. People and J.C. Bean, “Band alignments of coherently strained-GexSi1−x/Si heterostructures on <001> GeySi1−y substrates,” Appl. Phys. Lett., vol. 48, pp. 538-540, 1986.
[2] O. Weber, F. Ducroquet, T. Ernst, F. Andrieu, J.-F. Damlencourt, J.-M. Hartmann, B. Guillaumot, A.-M. Papon, H. Dansas, L. Brévard, A. Toffoli, P. Besson, F. Martin, Y. Morand, and S. Deleonibus, “55 nm high mobility SiGe(:C) pMOSFETs with HfO2 gate dielectric and TiN metal gate for advanced CMOS,” in Symp. VLSI Tech. Dig., 2004, pp. 42-43.
[3] J.-S. Goo, Q. Xiang, Y. Takamura, H. Wang, J. Pan, F. Arasnia, E.N. Paton, P. Besser, M. V. Sidorov, E. Adem, A. Lochtefeld, G. Braithwaite, M.T. Currie, R. Hammond, M.T. Bulsara, and M.-R. Lin, “Scalability of strained-Si nMOSFETs down to 25 nm gate length,” IEEE Electron. Device Lett., vol. 24, pp. 351-353, 2003.
[4] T. Sanuki, A. Oishi,; Y. Morimasa, S. Aota, T. Kinoshita, R. Hasumi, Y. Takegawa, K. Isobe, H. Yoshimura, M. Iwai, K. Sunouchi, and T. Noguchi, “Scalability of strained silicon CMOSFET and high drive current enhancement in the 40 nm gate length technology,” in IEDM Tech. Dig., 2003, pp. 65-68.
[5] K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong, “Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs,” in Symp. VLSI Tech. Dig., 2002, pp. 98-99.
[6] D.J. Paul, “Si/SiGe heterostructures: From material and physics to devices and circuits,” Semicond. Sci. Technol., vol. 19, pp. R75–R108, 2004.
[7] K. Misty, M. Armstrong, C. Auth, S. Cea’, T. Coan, T. Ghani, T. Hoffmann, A. Murthy, J. Sandford, R. Shaheed‘, K. Zawadzki, K. Zhang, S. Thompson and M. Bohr, “Delaying forever: uniaxial strained silicon transistors in a 90nm CMOS technology,” in Symp. VLSI Tech. Dig., 2004, pp. 50-51.
[8] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald and D. A. Antoniadis, “Strained silicon MOSFET technology,” in IEDM Tech. Dig., 2002, pp. 23-26
[9] M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, “Six-band k•p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness,” J. Appl. Phys., vol. 94, pp. 1079-1095, 2003.
[10] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS drive current reduction caused by transistor layout and trench isolation induced stress,” in IEDM Tech. Dig., 1999, pp. 827-830.
[11] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement,” in IEDM Tech Dig., 2001, pp. 433—436.
[12] A. Steegen, M. Stucchi, A. Lauwers, and K. Maex, “Silicide induced pattern density and orientation dependent transconductance in MOS transistors,” in IEDM Tech. Dig., 1999, pp. 497-500.
[13] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” in IEDM Tech Dig., 2003, pp. 978-980.
[14] H. Sayama, Y. Nishida, H. Oda, T. Oishi, S. Shimizu, T. Kunikiyo, K. Sonoda, Y. Inoue and M. Inuishi, “Effect of <100> Channel Direction for High Performance SCE Immune pMOSFET with Less Than 0.15pm Gate Length,” in IEDM Tech Dig., 1999, pp. 657-660.
[15] C. C. Wu, Y. K. Leung, C. S. Chang, M. H. Tsai, H. T. Huang, D. W. Lin, Y. M. Sheu, C. H. Hsieh, W. J. Liang, L. K. Han, W. M. Chen, S. Z. Chang, S. Y. Wu, S. S. Lin, H. C. Lin, C. H. Wang, P. W. Wang, T. L. Lee, C. Y. Fu, C. W. Chang, S. C. Chen, S. M. Jang, S. L. Shue, H. T. Lin, Y. C. See, Y. J. Mii, C. H. Diaz, Burn J. Lin, M. S. Liang, Y. C. Sun, “A 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications,” in IEDM Tech Dig., 2002, pp. 65-68.
[16] C. Canali, G. Ottaviani and A. Quaranta, “ Drift velocity of electrons and holes and associated anisotropic effects in Si,” J. Phys. Chem. Solids, vol. 32, pp. 1707-1720, 1971.
[17] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex,” J. Appl. Phys., vol. 94, pp. 2590-2596, 2003.
[18] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Y. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr,and Y. El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, pp. 1790-1797, 2004.

===========================================================

chapter 3
[1] X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. Hu, ”Sub 50-nm FinFET: PMOS,” in IEDM Tech. Dig., 1999, pp. 67-70.
[2] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, pp. 2320-2325, 2000.
[3] J. Kedzierski, E. Nowak, T. Kanarsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Saunders, K. Wong, D. Canaperi, M. Krishnan, K. Lee, B. Rainey, D. Fried, P. Cottrell, H. Wong, M. Ieong, and W. Haensch, “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation,” in IEDM Tech. Dig., 2002, pp. 247-250.
[4] X. Zheng, M. Pak, J. Huang, S. Choi, and K. L. Wang, “A vertical MOSFET with a leveling, surrounding gate fabricated on ananoscale island,” in Device Research Conf. Dig., 1998, pp. 70-71.
[5] K. Mori, A. Duong, and William F. Richardson, “Sub-100-nm vertical MOSFET with threshold voltage adjustment,” IEEE Trans. Electron Devices, vol. 49, pp. 61-66, 2002.
[6] M. Yang, C. L. Chang, M. Carroll, and J. C. Sturm, “25-nm p-channel vertical MOSFETs with SiGeC source-drains,” IEEE Electron Devices Lett., vol. 20, pp. 301-303, 1999.
[7] T. Sato, Y. Takeishi, and H. Hara, “Mobility anisotropy of electrons in inversion layers on oxidized silicon surfaces,” Phys. Rev. B, vol. 4, pp. 1950-1960, 1971.
[8] M. Kinugawa, M. Kakumu, T. Usami and J. Matsunaga, “Effects of silicon surface orientation on submicron CMOS devices,” in IEDM Tech. Dig., 1985, pp. 581-584.
[9] H. S. Momose, T. Ohguro, S. Nakamura, Y. Toyoshima, H. Ishiuchi, and H. Iwai, “Ultrathin gate oxide CMOS on (111) surface-oriented Si substrate,” IEEE Trans. Electron Devices, vol. 49, pp. 1597-1605, 2002.
[10] H. S. Momose, T. Ohguro, S. Nakamura, Y. Toyoshima, H. Ishiuchi, and H. Iwai, “Study of wafer orientation dependence on performance andreliability of CMOS with direct-tunneling gate oxide,“ in Symp. VLSI Tech. Dig., 2001, p. 77.
[11] R. Ohba and T. Mizuno, “Nonstationary electron/hole transport in sub-0.1 μm MOS devices:correlation with mobility and low-power CMOS application,” IEEE Trans. Electron Devices, vol. 48, pp. 338-343, 2001.
[12] T. Hatakeyama, K. Matsuzawa, and S. Takagi, “Impact of strained-Si channel on complementary metal oxide semiconductor circuit performance under the sub-100 nm regime,” Jpn. J. Appl. Phys., vol. 40, pp. 2627-2632, 2001.
[13] T. Y. Lu and T. S. Chao, “Mobility enhancement in local strain channel nMOSFETs by stacked a-Si/poly-Si gate and capping nitride,” IEEE Electron Devices Lett. vol. 26, pp. 267-269, 2005.
[14] J. B. Roldan and F. Gamiz, “Simulation and modeling of transport properties in strained-Si and strained-Si/SiGe-on-insulator MOSFETs,” Solid-State Electron., vol. 48, pp. 1347-1355, 2004.
[15] G. Abstreiter, H. Brugger, and T. Wolf, “Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1-x superlattices,” Phys. Rev. Lett., vol. 54, pp. 2441-2444, 1985.
[16] R. People, “Physics and application of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron, vol. 22, 1696-1710, 1986.
[17] D. C. Tsui and G. Kaminsky, “Observation of sixfold valley degeneracy in electron inversion layers on Si(111),” Phys. Rev. Lett., vol. 42, pp. 595-597, 1979.
[18] E. A. Irene, ”Residual stress in silicon nitride films,” J. Electron. Mater., vol. 5 pp. 287-298, 1976.
[19] S. E. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” in IEDM Tech. Dig., 2004, pp. 221-224.

==========================================================

chapter 4
[1] K. Takasaki, K. Irino, T. Aoyama, Y. Momiyama, T. Nakanishi, Y. Tamura, and T. Ito, “Impact of nitrogen profile in gate nitrided-oxide on deep-submicron CMOS performance and reliability,” Fujitsu Sci. Tech. J., vol. 39, pp.40-51, 2003.
[2] C. Lin, A. I. Chou, K. Kumar, P. Chowdhury, and J. C. Lee, “Leakage current, reliability characteristics, and boron penetrationof ultra-thin (32-36 Å) O2-oxides and N2O/NOoxynitrides,” in IEDM Tech. Dig., 1996, pp. 331-334.
[3] T. Aoyama, S. Ohkubo, H. Tashiro, Y. Tada, K. Suzuki, and K. Horiuchi, “Boron diffusion in nitrided-oxide gate dielectrics leading to high suppression of boron penetration in P-MOSFETs,” Jpn J. Appl. Phys., vol. 37, pp. 1244-1250, 1998.
[4] S. K. H. Fung, H. T. Huang, S. M. Cheng, K. L. Cheng, S. W. Wang, C. C. Wu, C. Y. Lin, S. J. Chang, S. Y. Wu, C. F. Nieh, C. C. Chen, T. L. Lee, Y. Jin, S. C. Chen, L. T. Lin, Y. H. Chiu, H. J. Tao, C. Y. Fu, S. M. Jang, K. F. Yu, C. H. Wang, T. C. Ong, Y. C. See, C. H. Diaz, M. S. Liang, and Y. C. Sun, “65nm CMOS high speed, general purpose and low power transistor technology for high volume foundry application,” in Symp. VLSI Tech. Dig., 2004, pp. 92-93.
[5] Z. Luo, A. Steegen, M. Eller, R. Mann, C. Baiocco, P. Nguyen, L. Kim, M. Hoinkis, V. Ku, V. Klee, F. Jamin, P. Wrschka, P. Shafer, W. Lin, S. Fang, A. Ajmera, W. Tan, D. Park, R. MO, J. Lian, D. Vietzke, C. coppock, A. Vayshenker, T. Hook, V. Chan, K. Kim, A. Cowley, S. Kim, E. Kaltalioglu, B. Zhang, P. S. Marokkef, Y. Lin, K. Lee, H. Zhu, M. Weybright, R. Rengarajan, J. Ku, T. Schiml , J. Sudijono, I. Yang, and C. Wann, “High performance and low power transistors integrated in 65nm bulk CMOS technology,” in IEDM Tech. Dig., 2004, pp. 661-664.
[6] Y. Nakaharam, T. Fukai, M. Togo, S. Koyama, H. Morikuni, T. Matsuda, K. Sakamoto, A. Mineji, S. Fujiwara, Y. Kunimune, M. Nagase, T. Tamura, N. Onoda, S. Miyake, Y. Yama, T. Kudoh, M. Ikeda, Y. Yamagata, T. Yamamoto, and K. Imai, “A robust 65-nm node CMOS technology for wide-range Vdd operation,” in IEDM Tech. Dig., 2003, pp. 281-284.
[7] T. Yamamoto, K. Uwasawa, and T. Mogami, “Bias temperature instability in scaled p+ polysilicon gate p-MOSFET's,” IEEE Trans. Electron Devices, vol. 46, pp. 921-926, 1999.
[8] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: road to cross in deep sunmicron silicon semiconductor manufacturing,” Appl. Phys. Rev., vol. 94, pp. 1-18, 2003.
[9] B. S. Doyle and K. R. Mistry,“A lifetime prediction method for hot-carrier degradation insurface-channel p-MOS devices,” IEEE Trans. Electron Devices, vol. 37, pp. 1301-1307, 1995.
[10] R. Woltjer, G. M. Paulzen, H. G. Pomp, H. Lifka, and P. H. Woerlee, “Three hot-carrier degradation mechanisms in deep-submicron PMOSFET's,” IEEE Trans. Electron Devices, vol. 42, pp.109-115, 1995.
[11] J. F. Zhang and W. Eccleston, “Effects of high field injection on the hot carrier induced degradation of submicrometer pMOSFET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 1269-1276, 1995.
[12] D. Writers, L. K. Han, T. Chen, H. H. Wang, D. L. Kwong, M. Allen, and J. Fulford, “Degradation of oxynitride gate dielectric reliability due to boron diffusion,” Appl. Phys. Lett., vol. 68, pp. 2094-2096, 1996.
[13] K. Nimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C. T. Liu, R. C. Keller, and T. Horiuch, “NBTI enhancement by nitrogen incorporation into ultrathin gateoxide for 0.10-μm gate CMOS generation,” in Symp. VLSI Tech. Dig., 2000, pp. 92-93.
[14] S. F. Ting, Y. K. Fang, C. H. Chen, C. W. Yang, W. T. Hsieh, J. J. Ho, M. C. Yu, S. M. Jang, C. H. Yu, M. S. Liang, S. Chen, and R. Shih, “The effect of remote plasma nitridation on the integrity of theultrathin gate dielectric films in 0.13 μm CMOS technology and beyond,” IEEE Electron Device Lett., vol. 22, pp. 327-329, 2001.
[15] S. S. Tan, T. Chen, C. H. Ang, C. M. Lek, W. Lin, J. Zhen, A. See, and L. Chan, “Negative-bias-temperature-instability (NBTI) for p+-gate pMOSFET with ultra-thin plasma-nitrided gate dielectrics,” in Proc. Plasma- and Process-Induced Damage 7th Int. Symp., 2002, pp. 146-149.
[16] Y. Mitani, “Influence of nitrogen in ultra-thin SiON on negative bias temperature instability under AC stress,” in IEDM Tech. Dig., 2004, pp.117-120.
[17] Y. D. He, M. C. Xu, and C. G. Tan, “Effects of plasma nitridation on ultra-thin gate oxide electrical and reliability characteristics,” Solid-State Electron, vol. 49, pp.57-61, 2005.
[18] A. Kamgar, J. T. Clemems, A. Ghetti, C. T. Liu, and E. J. Lloyd, ”Reduced electron mobility due to nitrogen implant prior to the gate oxide growth,” IEEE Electron Device Lett., vol. 21, pp. 227-229, 2000.
[19] P. Heremans, J. Witters, G. Groeseneken, and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation,” IEEE Trans. Electron Devices, vol. 36, pp. 1318-1335, 1989.
[20] S. S. Chung, H. J. Feng, Y. S. Hsieh, A. Liu, W. M. Lin, D. F. Chen, J. H. Ho, K. T. Huang, C. K. Yang, O. Cheng, Y. C. Sheng, D. Y. Wu, W. T. Shiau, S. C. Chien, K. Liao, and S. W. Sun, “Low leakage reliability characterization methodology for advanced CMOS with gate oxide in the 1nm range,” in IEDM Tech. Dig., 2004, pp. 477-480.
[21] S. S. Tan, C. H. Ang, C. M. Lek, T. P. Chen, B. J. Cho, A. See, and L. Chan, “Characterization of ultrathin plasma nitrided gate dielectrics in pMOSFET for 0.18 μm technology and beyond,” in Proc. Physical and Failure Analysis of Integrated Circuits, IPFA 9th Int. Symp., 2002, p. 254.
[22] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO2 (4-6 nm)-Si interfaces during negative-bias temperature aging,” J. Appl. Phys., vol. 77, pp. 1137-1148, 1995.
[23] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-bulidup instability at the Si-SiO2 interface,” Phys. Rev. B, vol. 51, pp. 4218-4230, 1995.
[24] R. Moazzami and C. Hu, “Stress-induced current in thin silicon dioxide films,” in IEDM Tech. Dig., 1992, pp. 139-142.

============================================================

chapter 5
[1] S. W. Huang, and J. G. Hwu, “Lateral Nonuniformity of Effective Oxide Charges in MOS Capacitors with Al2O3 Gate Dielectrics,” IEEE Trans. Electron Devices, vol. 53, pp. 1608-1614, 2006.
[2] L. A. Ragnarsson, V. S. Chang, H. Y. Yu, H. J. Cho, T. Conard, K. M. Yin, A. Delabie, J. Swerts, T. Schram, S. D. Gendt, and S. Biesemans, “Achieving Conduction Band-Edge Effective Work Functions by La2O3 Capping of Hafnium Silicates,” IEEE Electron Device Lett., vol. 28, pp. 486-488, 2007.
[3] C. S. Lai, W. C. Wu, T. S. Chao, J. H. Chen, J. C. Wang, L. L. Tay, and N. Rowell, “Suppression of Interfacial Reaction for HfO2 on Silicon by Pre-CF4 Plasma Treatment,” Appl. Phys. Lett., vol. 89, p. 072904, 2006.
[4] C. S. Lai, W. C. Wu, J. C. Wang, and T. S. Chao, “Characteristics of Fluorine Implantation for HfO2 Gate Dielectrics with High-temperature Postdeposition Annealing ,” Jpn. J Appl. Phys., vol. 45, no. 4B, pp.2893-2897, 2005.
[5] W. C. Wu, C. S. Lai, J. C. Wang, J. H. Chen, M. W. Ma, and T. S. Chao, “High-Performance HfO2 Gate Dielectrics Fluorinated by Postdeposition CF4 Plasma Treatment,” J. Electrochem. Soc., vol. 154, no. 7, pp.561-565, 2007.
[6] X. Yu, M. Yu, and C. Zhu, “Advanced HfTaON/SiO2 Gate Stack With High Mobility and Low Leakage Current for Low-Standby-Power Application,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 498-501, 2006.
[7] M. Cassé, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, and F. Boulanger, “Carrier Transport in HfO2/Metal Gate MOSFETs: Physical Insight Into Critical Parameters," IEEE Trans. Electron Devices, vol. 53, pp. 759-768, 2006.
[8] C. S. Lai, W. C. Wu, J. C. Wang and T. S. Chao, “The Characterization of CF4 Plasma Fluorinated HfO2 Gate Dielectrics with TaN Metal Gate,” Appl. Phys. Lett. vol. 86, pp. 22905-22907, 2005.
[9] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-k/metal gate stack and its MOSFET characteristics,” IEEE Electron Device Lett., vol. 25, no. 6, pp. 408-410, 2004.
[10] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, pp. 1-18, 2003.
[11] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (QSS) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, pp. 266-274, 1967.
[12] N. Shiono and T. Yashiro, “Surface state formation during long-term bias-temperature stress aging of thin SiO2-Si interfaces,” Jpn. J. Appl. Phys., vol. 18, pp. 1087-1095, 1979.
[13] K. Onishi, C. S. Kang, R. Choi, H.-J. Cho, S. Gopalan, R. Nieh, S. Krishnan, and J. C. Lee, “Charging effects on reliability of HfO2 devices with polysilicon gate electrode,” in Proc. IRPS, 2002, pp. 419-420.
[14] J. F. Zhang and W. Eccleston, “Positive bias temperature instability in MOSFETs,” IEEE Trans. Electron Devices, vol. 45, pp. 116–124, Jan. 1998.
[15] M. Bourcerie, B. S. Doyle, J.-C. Marchetaux, J.-C. Soret, and A. Boudou, “Relaxable damage in hot-carrier stressing of n-MOS transistors-oxide traps in the near interfacial region of the gate oxide,” IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 708–717, Mar. 1990.
[16] W. T. Lu, P. C. Lin, T. Y. Huang, C. H. Chien, M. J. Yang, I. J. Huang, and P. Lehnen, “The characteristics of hole trapping in HfO2/SiO2 gate dielectrics with TiN gate electrode,” Appl. Phys. Lett., vol. 85, no. 16, pp. 3525–3527, Oct. 2004.
[17] R. Degraeve, A. Kerber, P. Roussel, E. Cartier, T. Kauerauf, L. Pantisano, and G. Groeseneken, “Effect of bulk trap density on HfO2 reliability and yield,” in IEDM Tech. Dig., 2003, pp. 935–938.
[18] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur and C. Parthasarathy, “Review of high-k dielectrics reliability issues,” IEEE Trans. Dev. Mat. Reliab. 2005, pp. 5–19.
[19] S. Zafar, A. Callegari, E. Gusev and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, pp. 9298-9303, 2003.
[20] B. H. Lee, J. H. Sim, R. Choi, G. Bersuker, K. Matthew, N. Moumen, J. Peterson and L. Larson, “Localized transient charging and it's implication on the hot carrier reliability of HfSiON MOSFETs,” in Proc. IRPS, 2004, pp. 691-692.
[21] E. P. Gusev and C. P. D’Emic, “Charge detrapping in HfO2 high-k gate dielectric stacks,” Appl. Phys. Lett., vol. 83, pp. 5223-5225, 2003.
[22] F. Crupi, R. Degraeve, A. kerber, D. H. Kwak and G. Groeseneken, “Correlation between Stress-Induced Leakage Current (SILC) and the HfO2 bulk trap density in a SiO2/HfO2 stack,” in Proc. IRPS, 2004, pp. 181-187.
[23] J. S. Brugler and P. G. A. Jespers, “Charge pumping in MOS devices,” IEEE Trans. Electron Devices, vol. 16, , pp. 297-302, Mar. 1969.
[24] S. M. Sze and Kwok K. Ng, Physics of semiconductor devices, 3rd edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007, ch. 6.

==========================================================
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔