(54.236.58.220) 您好!臺灣時間:2021/03/06 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴瑞霖
研究生(外文):Rui-Ling Lai
論文名稱:藉助催化金屬與元件結構以增進奈米碳管場發射特性之研究
論文名稱(外文):Study on the Improvements of Field-Emission Characteristics of the Carbon Nanotubes via Modifying the Catalyst and Device Structures
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Huang-Chung Cheng
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:202
中文關鍵詞:奈米碳管可靠度均勻性真空微電子場發射顯示器背光模組
外文關鍵詞:carbon nanotubesreliabilityuniformityvacuum microelectronicsfield emission displaysback light units
相關次數:
  • 被引用被引用:1
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文當中,我們利用奈米碳管為場發射元件之電子源,並藉由改善催化金屬材料及其元件結構以改善場發射特性。於此研究中,我們運用金屬鈦覆蓋或摻雜於催化金屬鐵以控制催化金屬之活性、大小以及分佈,進而增進場發射電流密度、增強元件可靠度或是改善場發射電流之均勻性。此外,我們亦藉由微影的方式製作柱狀之奈米碳管場發射源,藉由人造結構來得到均勻之場發射電子源分佈,並有效控制柱狀場發射源之間距以降低電場遮蔽效應,而得到最佳化之場發射電流以及啟始電場。最後,於三極場發射元件中加入一層氮化矽以阻絕閘極與陰極間之漏電,進而改善三極場發射元件效率不佳之缺點。
首先,在場發射電流密度方面,對於奈米碳管而言,影響其電流密度之主要原因在於過高的奈米碳管密度所導致的電場屏蔽效應。對此,我們在經過氫氣前處理之鐵奈米顆粒上沈積一層微薄之金屬鈦,藉助鈦阻擋含碳之反應物質進入鐵催化金屬進而抑制奈米碳管之生成以降低奈米碳管的密度。藉由沈積不同厚度之金屬鈦,我們可以有效地控制奈米碳管之密度以增進其場發射電流密度並降低其啟始電場。此外,藉由所沈積之金屬鈦在奈米碳管成長過程中受熱部分融化並包圍鐵催化金屬奈米顆粒,我們發現元件在量測過程所發生之電流崩潰現象有效地被抑制了,而其場發射電流在高電場下之劣化現象亦有效地被改善,針對此一結果,我們認為金屬鈦之包圍使得奈米碳管與基板之間的附著性被增強且降低其接觸電阻,因此改善了元件的可靠度。
然而,雖然電流密度與可靠度被改善了,其均勻性不佳之現象依然無法得到解決,是以我們利用金屬鈦與催化金屬鐵共鍍作為成長奈米碳管之催化金屬層,藉此使催化金屬顆粒之形成更為均勻,並藉由金屬鈦抑制催化金屬顆粒的聚集以得到小尺寸、且尺寸均勻之催化金屬奈米顆粒,最後成長出長度均勻之奈米碳管並在塗佈螢光粉之陽極板上得到均勻之光源。此外,因為鐵催化金屬顆粒於催化金屬層中受熱析出而形成部分被埋於催化金屬層中之結構,其可靠度亦大為改善。
接著,我們利用微影的方式以鐵鈦共鍍為催化金屬製作柱狀奈米碳管之場發射元件。藉由鐵鈦共鍍以得到均勻、筆直且具有穩定場發射電流之奈米探管;利用微影控制其間距,以有效降低電場屏蔽效應並且避免距離過大而減少場發射區域之總面積。是以,得到一個均勻分佈且具有較高場發射電流密度之場發射電子源。
最後,針對三極式場發射電子元件效率不佳之缺點,我們在元件中增加一層氮化矽絕緣層於閘極之上或閘極之下,以阻絕由陰極被閘極電場所吸引出來的電子電流,藉此改善電流效率以及功率效能。
在本論文中,我們提出了簡單、便宜且不會對場發射源奈米碳管造成結構損傷之方式來改善場發射電子元件之場發射特性。是以相當具有應用於場發射平面顯示器或是液晶螢幕背光模組之潛力。
In this dissertation, the carbon nanotubes (CNTs) were utilized as the electron source in field-emission devices. By modifying the metallic catalysts and the device structures, the field-emission characteristics were greatly improved. In this research, Ti capping layer and Ti codeposited with Fe were used to control the activity, size, and distribution of the Fe catalytic nanoparticles for improving the emission current density, reliability, and uniformity of the devices. Moreover, the diameter and position of pillar-like CNTs synthesized from Fe-Ti codeposited catalyst were controlled by lithography. Therefore, a uniform distribution of emitters with suppressed screening effect was obtained for high emission current density and low turn-on field. Finally, a silicon nitride film was added into the triode-type field-emission devices to block the leakage current between the gate and the cathode for improving the power efficiency.
For emission current density, the high density of CNTs caused a serious screening effect which could greatly decrease the emission current density. Accordingly, a thin Ti capping layer was deposited on the hydrogen pretreated Fe nanoparticles to resist the diffusion of the carbon radicals and effectively reduce the density of emitters. By altering the thickness of the Ti capping layer, a suitable density of CNTs was obtained with high emission current density and low turn-on field. Moreover, the Ti capped on the Fe nanoparticles held the nanoparticles firmly to provide stronger adhesion and lower contact resistance than those synthesized from the pure Fe. It remarkably suppressed the breakdown of the field-emission devices and diminished the degradation of emission current density at high electric field. It might result from the improvements of the contact properties with the modification of metallic catalyst.
However, the problems of uniformity were still not solved by means of the thin Ti capping layer. Therefore, a Fe-Ti codeposited metal layer was utilized as the catalyst of CNTs. During being heated, the nucleation of Fe atoms formed smaller nanoparticles with better uniformity due to the suppression of coalescence between Fe nanoparticles than those synthesized from pure Fe. A homogeneous light emission was therefore observed on the phosphor (P22) coated glasses. Furthermore, the nucleation of Fe nanoparticles resulted in a partially immersed structure of the CNTs which provided better contact properties between the CNTs and the substrates. As previous description, the reliability of the device could be improved.
Additionally, the lithography was utilized to form an artificial structure of pillar-like CNTs to control the diameter and distribution of emitters more precisely. The Fe-Ti codeposited catalyst was utilized for uniform CNTs with reliable emission current. A uniform distribution of emitters with low turn-on field was therefore achieved.
Finally, a silicon nitride layer was deposited on the poly-gate or under the poly-gate to block the electron emission from the cathode to the gate. Both of them could effectively improve the current efficiency and therefore increase the power efficiency of triode-type field-emission devices.
In this dissertation, simple, costless, and harmless methods have been proposed to improve the field-emission characteristics of CNTs. It showed a great potential in the applications of the field-emission displays and the back-light units in near future.
Chapter 1 Introduction
1.1 Overview of Vacuum Microelectronics.............1
1.1.1 Technologies of Vacuum Microelectronics.........3
1.1.2 Applications of Vacuum Microelectronics in Field-Emission Displays...11
1.2 Theory of Field Emission........................13
1.3 Carbon Nanotubes................................17
1.3.1 Arc discharge 18
1.3.2 Laser Ablation..................................18
1.3.3 Chemical Vapor Deposition.......................18
1.4 Motivation ...20
1.4.1 Reliability ..20
1.4.2 Uniformity ...21
1.5 Outline of Dissertation.........................21

Chapter 2 The Improvements of Emission Current Density and Reliability for the CNTs Synthesized from the Ti-Capped Fe Nanoparticles
2.1 Introduction .23
2.2 Experimental Procedures.........................26
2.2.1 Sample Fabrication..............................26
2.2.2 Material Analysis and Electrical Measurement....28
2.3 The Emission Current Density of the Carbon Nanotubes Synthesized from a Ti Capped Catalytic Nanoparticles .........28
2.4 The Reliability Improvements of the Carbon Nanotubes by Modifying the Contact Properties............32
2.5 Summary ......35

Chapter 3 The Improvements of Reliability and Uniformity for the CNTs Synthesized from the Fe-Ti Codeposited Catalyst
3.1 Introduction .37
3.2 Experimental Procedures.........................39
3.2.1 Sample Fabrication..............................39
3.2.2 Material Analysis and Electrical Measurement....40
3.3 The Partially Immersed Structure of the Carbon Nanotubes for the Reliability Improvements...............41
3.4 The Suppression of the Coalescence between Fe Nanoparticles for a Uniform Light Emission...............45
3.5 Summary ......47

Chapter 4 The Synthesis and Characteristics of the Pillar-Like CNTs Synthesized from the Fe-Ti Codeposited Catalyst
4.1 Introduction .49
4.2 Experimental Procedures.........................50
4.2.1 Sample Fabrication..............................50
4.2.2 Material Analysis and Electrical Measurement....52
4.3 The Synthesis of the Pillar-Like Carbon Nanotubes by Utilizing the Fe-Ti Codeposited Catalyst..............52
4.4 The Optimization of the Inter-Pillar Spacing Designed via the Lithography.............................54
4.5 Summary ......56

Chapter 5 The Reduction of Gate Leakage for the CNTs-Based Triode Devices via Adding a Silicon Nitride Layer
5.1 Introduction .58
5.2 Experimental Procedures.........................60
5.2.1 Sample Fabrication..............................60
5.2.2 Material Analysis and Electrical Measurement....61
5.3 The Power Efficiency Improvements via Cutting Off the Leakage Paths .....61
5.4 Summary ......62

Chapter 6 Summary and Conclusions ...64
Chapter 7 Future Prospects ...67
References ...69
Tables ...92
Figures ...98
Vita ...197
Publication Lists ...198
References

Chapter 1
[1.1] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. Rev., Vol. 74, pp. 230-231, 1948.
[1.2] R. N. Noyce, "Semiconductor Device-and-Lead Structure," US Patent 2,981,877, 1959.
[1.3] J. S. Kilby, “Invention of the Integrated Citcuit,” IEEE Trans. Electron. Dev., Vol. ED-23, No. 7, pp. 684-654, 1976.
[1.4] P. Vaudaine and R. Myer, “Microtips Fluorescent Display,,”ternational Electron Devices Meeting, pp. 197-200, 1991.
[1.5] C. Curtin, “The Field Emission Display: A New Flat Panel Technology,” Proceedings of the International Display Research Conference, SID, pp. 12-15, 1991.
[1.6] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerburg, “Field-emitter Array to Vacuum Fluorescent Display,” IEEE Trans. Electron. Dev., Vol. 36, No. 1, pp. 225-228, 1989.
[1.7] David A. Cathey. Jr., “Field Emission Displays,,”ternational Symposium on VLSI Technology Systems, and Applications, Proceedings of Technical Papers, Taiwan, pp. 131-136, 1995.
[1.8] “Pixel Tech to produce color FEDs” Nikkei Electronics ASIA, p. 42, Nov., 1995.
[1.9] H. G. Kosmahl, “A Wide-bandwith High-gain Small Size Distributed Amplifier with Field Emission Triodes (FETRODE’s) for the 10 to 300 GHz Frequency Range,” IEEE trans. Electron. Dev., Vol. 36, No. 11, pp. 2728-2737, Nov. 1989.
[1.10] P. M. Lally, E. A. Nettesheim, Y. Goren, C. A. Spindt, and A. Rosengreen, “A 10 GHz Tuned Amplifier Based on the SRI Thin Film Field-Emission Cathode,,”ternational Electron Devices Meeting, p.522, 1998.
[1.11] C. A. Spindt, C. E. Holland, A. Rosengreen, and I. Brodie, “Field-emitter-array Development for High Frequency Operation,” J. Vac. Sci. Technol. B, Vol. 11, pp. 468-473, 1993.
[1.12] C. A. Spindt, “Microfabricated Field-emission and Field-ionization Sources,” Surface Sci., Vol. 266, pp. 145-154, 1992.
[1.13] T. H. P. Chang, D. P. Kern, et, al., “ A Scanning Tunneling Microscope Controlled Field Emission Micro Probe System,” J. Vac. Sci. Tech. B, No. 9, pp. 438-443, 1991.
[1.14] H. H. Busta, J. E. Pogemiller, and B. J. Zimmerman, “The Field-Emtter Triode as a Displacement/Pressure Sensor,” J. Micromech. Microeng., Vol. 3, pp. 49-56, 1933.
[1.15] H. C. Lee and R. S. Huang. “A Novel Field Emission Array Pressure Sensor,” IEEE Transducers-International Solid-State Sensors and Actuators, Vol. 126, pp. 241-244, 1991.
[1.16] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John-Wiley & Sons publisher, New York, 648, 1991.
[1.17] J. A. Morton and R. M. Ryder, “Design Factors of the Bell Laboratories 1553 Triode,” Bell Sys. Tech. J., Vol. 29,p. 496, 1950.
[1.18] Wei Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001.
[1.19] D. A. Buck and K. R. Shoulders, “An Approach to Microminiature Printed Systems,” Eastern Joint Computer Conference, pp. 55-59, 1959.
[1.20] K. R. Shoulders, “Microelectronics Using Electron Beam Activated Machining Technologies,” Advances in Computers, Vol. 2, pp. 135-293, 1961.
[1.21] M. E. Crost, K. Shoulders, and M. E. Zinn, “Thin Electron Tube with Electron Emitters at the Intersection of Crossed Conductors,” US Patent 3,500, 102, 1970.
[1.22] C. A. Spindt and K. R. Shoulders, “Research in Micro-size Field-Emission Tubes,” IEEE Conference on Tube Techniques, pp. 143-147, 1966.
[1.23] K. Betsui, “Fabrication and Characteristics of Si Field Emitter Arrays,” Tech. Dig. 4th Int. Vacuum Microelectronics Conf., Naghama, Japan, p.26-29, 1991.
[1.24] H. F Gray, “Silicon Field Emitter Array Technology,” Proc. 29th Int. Field Emission Symp., Stockholm, Sweden, p. 111, 1982.
[1.25] G. J. Campisi, H. F. Gray, and R. F. Greene, “A Vacuum Field Effect Transistor Using Silicon Field Emitter Arrays,” IEDM Technical Digest, pp. 776-779, 1986.
[1.26] P. B. Marcus and T. T. Sheng, “The Oxidation of Shaped Silicon Surface,” J. Electrochem. Soc., Vol. 129, pp.1278-1282, 1982.
[1.27] F. J. Himpsel, J. A. Knapp, J. A. van Vechten, and D. E. Eastman, “Quantum photoyield of diamond(111)—A stable negative-affinity emitter,” Phys. Rev. B, Vol. 20, pp. 624-627 ,1979.
[1.28] S. Lee, B. K. Ju, Y. H. Lee, D. Jeon, and M. H. Oh, “Fabrication and field emission study of gated diamondlike-carbon-coated silicon tips,” J. Vac. Sci. Technol. B, Vol. 15, p.425, 1997.
[1.29] K. L. Park, J. H. Moon, S. J. Chung, J. Jang, M. H. Oh, and W. I. Milne, “Deposition of N-type Diamond-like Carbon by Using the Layer-by-layer Technique and its Electron Emission Properties,” Appl. Phys. Lett., Vol. 70, pp. 1381-1383, 1997.
[1.30] F. Y. Chuang, C. Y. Sun, T. T. Chen, and I. N. Lin, “Local Electron Field Emission Characteristics of Pulsed Laser Deposited Diamond-like Carbon Films,” Appl. Phys. Lett., Vol. 69, pp. 3504-3506, 1996
[1.31] J. Robertson, “Recombination and Photoluminescence Mechanism in Hydrogenated Amorphous Carbon,” Phys. Rev. B, Vol. 53, pp.16302-16305, 1996.
[1.32] J. Rinstein, J. Schafer, and L. Ley, “Effective Correlation Energies for Defects in a-C:H from a Comparison of Photelectron Yield and Electron Spin Resonance Experiments,” Diam. Relat. Mater., Vol. 4, pp. 508-516, 1995.
[1.33] E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, and T. Nakagiri, “A 10-in. Surface-Conduction Electron-Emitter Display,” J. SID, Vol. 5, pp.345-348, 1997.
[1.34] R. C. Miller and A. Savage, “Motion of 180° Domain Walls in Metal Electroded Barium Titanate Crystals as a Function of Electric Field and Sample Thickness,” J. Appl. Phys., Vol. 31, pp. 662-669, 1960.
[1.35] A. Koller and M. Beranek, “Einige neue Erkenntnisse über die Degradation von Titanaten im Zusammenhang mit der Exoemission,” Czech, J. Phys., Vol. 9, pp.402-403, 1959.
[1.36] G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron Emission from Ferroelectrics,” J. Appl. Phys., Vol. 88, pp.6109-6161 , 2000.
[1.37] C. A. Mead, “Operation of Tunnel-Emission Devices,” J. Appl. Phys., Vol. 32, pp.646-652, 1961.
[1.38] Y. Kumagai, K. Kawarada, and Y. Shibata, “Energy Distribution of Electrons Tunneling through a Metal-Insulator-Metal Sandwich Structure,” Jpn, J. Appl. Phys., Vol. 6, pp.280-296, 1966.
[1.39] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., Vol. 34, pp.1793-1803, 1963.
[1.40] K. Ohta, J. Nishida, and T. Hayashi, “Electron Emission Pattern of Thin-Film Tunnel Cathode,” Jpn. J. Appl. Phys., Vol. 7, pp. 784-784, 1968.
[1.41] T. Kusunoki, M. Suzuki, S. Sasaki, T. Yaguchi, and T. Adia, “Fluctuation-Free Electron Emission from Non-Formed Metal-Insulator-Metal (MIM) Cathodes Fabricated by Low Current Anodic Oxidation,” Jpn. J. Appl. Phys., Vol. 32, pp.L1695-L1697, 1993.
[1.42] H. Adachi, “Emission Characteristics of Metal–insulator–metal Tunnel Cathodes,” J. Vac. Sci. Technol. B, Vol. 14, pp. 2093-2095, 1996.
[1.43] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[1.44] N. A. Kiselev, A. P. Moravsky, A. B. Ormontc, and D. N. Zakharov, “SEM and HREM Study of the Internal Structure of Nanotube Rich Carbon Arc Cathodic Deposits ,” Carbon, Vol. 37, p0. 1093-1103, 1999.
[1.45] Guo T., Nikolaev P., Rinzler A. G., TomBnek D., Colbert D. T., and Smalley R. E., “Self-assembly of Tubular Fullerenes,” J. Phys. Chem., Vol. 99, pp. 10694-10697, 1995.
[1.46] A. M. Cassell, J. A. Raymarkers, J. King, and H. Dai, “Large Scale CVD Synthesis of Single-walled Carbon Nanotubes,” J. Phys. Chem. B, Vol. 103, pp. 6484-6492, 1999.
[1.47] L. Delzeit, B. Chen, A. M. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, “Multilayered Metal Catalysts for Controlling the Density of Single-walled Carbon Nanotubes Growth,” Chem. Phys. Lett., Vol. 348, pp. 368-374, 2001.
[1.48] Kind H., Bonard J. M., Forro L., Kern K., Hernadi K., Nilsson L. O., Schlapbach L., “Printing Gel-like Catalysts for the Directed Growth of Multi-wall Carbon Nanotubes,” Langmuir, Vol. 16, p. 6877-6883, 2000.
[1.49] Bojan O. Boskovic, Vlad Stolojan, Rizwan U.A. Khan, Sajad Haq, and S. Ravi P. Silva., “Large-area Synthesis of Carbon Nanofibres at Room Temperature,” Nat. Mater., Vol. 1, pp. 165-168, 2002.
[1.50] S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, “Low-temperature Growth of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition,” Appl. Phys. Lett., Vol. 83, pp. 135-137, 2003.
[1.51] C. Bower, W. Zhu, D. Shalom, D. Lopez, L. H. Chen, P. L. Gammel, and S. Jin, “On-chip Vacuum Microtriode Using Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 80, pp. 3820-3822, 2002.
[1.52] W. A. de Heer, A. Chateline, D. Ugrate, “A Carbon Nanotube Field-emission Electron Source,” Science, Vol. 270, pp. 1179-1180, 1995.
[1.53] C Journet, Wk Maser, P Bernier, A Loiseau, M Lamy De La Chapelle, S Lefrant, P Deniard, R. Lee, and Je Fischer, “Large Scale Production of Single Walled Carbon Nanotubes by the Electric Arc Technique,” Nature, Vol. 388, pp. 756-758, 1997.
[1.54] Kanchan A. Joshi, Jason Tang, Robert Haddon, Joseph Wang, Wilfred Chen, and Ashok Mulchandani, “A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode,” Electroanalysis, Vol. 17, pp. 54-58, 2005.
[1.55] F. Yuan and H. Ryu, “Synthesis, Characterization, and Performance of Carbon Nanotubes and Carbon Nanofibers with Controlled Size and Morphology as Catalyst Support Material for PEMFC,” Nanotechnology, Vol. 15, pp. S596-S602, 2004.
[1.56] Y. C. Kim and E. H. Yoo, “Printed Carbon Nanotube Field Emitters for Backlight Applications,” Jpn. J. of Appl. Phys.,Vol. 44, pp. L454- L456, 2005.
[1.57] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. Y. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, and J. M. Kim, “Electrophoresis Deposition of Carbon Nanotubes for Triode-type Field Emission Display,” Appl. Phys. Lett., Vol. 78, pp. 1547-1549, 2001.
[1.58] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully Sealed, High-brightness Carbon-nanotube Field-emission Display,” Appl. Phys. Lett., Vol. 75, pp. 3129-3131, 1999.
[1.59] F. Ito, Y. Tomihari, Y. Okada, K. Konuma, and A. Okamoto, “Carbon-Nanotube-Based Triode-Field-Emission Displays Using Gated Emitter Structure,” IEEE Electron Device Lett., Vol. 22, pp. 426-428, 2001.
[1.60] Q. H. Wang, M. Yan, and R. P. H. Chang, “Flat Panel Display Prototype Using Gated Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 78, pp. 1294-1296, 2001.
[1.61] W. A. de Heer, A. Chateline, D. Ugrate, “A Carbon Nanotube Field-emission Electron Source,” Science, Vol. 270, pp. 1179-1180, 1995.
[1.62] K. A. Dean and B. R. Chalamala, “Current Saturation Mechanisms in Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 76, pp. 375-377, 2000.
[1.63] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large Current Density from Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 75, pp. 873-875, 1999.
[1.64] R. H. Fowler and L. W. Nordhiem, “Electron Emission in Intense Field,” Proc. R. Soc. London Ser. A, Vol. 119A, pp. 173-175, 1928.
[1.65] Kevin L. Jensen, “Electron Emission Theory and its Application: Fowler-Nordhiem Equation and Beyond,” J. Vac. Sci. Technol. B, Vol. 21, 1528-1544, 2003.
[1.66] R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected Value of Fowler-Nordhiem Field Emission Function v(y) and s(y),” Phys. Rev., Vol. 90, p.515, 1953.
[1.67] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John-Wiley & Sons punlisher, New York, 648, 1991.
[1.68] S. Iijima, “Helical Microtubules of Graphitic Carbon,,” Nature, Vol.354, pp. 56, 1991.
[1.69] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “Buckminsterfullerene,” Nature, Vol. 318, pp. 162-163, 1985.
[1.70] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, Vol. 273, pp. 483-487, 1996.
[1.71] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, “Single-wall Carbon Nanotube Formation by Laser Ablation Using Double-targets of Carbon and Metal,” Chem. Phys. Lett., Vol. 278, pp. 102-106, 1997.
[1.72] M. Yudasaka, T. Komatsu, T. Ichihashi, Y. Achiba, and S. Iijima, “Pressure Dependence of the Structures of Carbonaceous Deposits Formed by Laser Ablation on Targets Composed of Carbon, Nickel and Cobalt ,” J. Phys. Chem. B, Vol. 102, pp. 4892-4896, 1998.
[1.73] M. Endo, K. Takeuchi, K. Kobori, K. Takahschi, H. W. Kroto, and A. Sakar, “Pyrolytic Carbon Nanotubes from Vapor-grown Carbon Fibers,” Carbon, Vol. 33, pp. 873-880, 1995.
[1.74] A. Fonseca, K. Hernadi, P. Piedigrosso, and J. -F. Colomer, “Synthesis of Singleand Multi-wall Carbon Nanotubes over Supported Catalysts,” J. Appl. Phys. A, Vol. 67, pp. 11-22, 1998.
[1.75] V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, and X. B. Zhang, “Catalytic Production and Purification of Nanotubules Having Fullerene-scale Diameters,” Carbon, Vol. 33, pp. 1727-1738, 1995.
[1.76] T. E. Muller, D. G. Reid, W. K. Hsu, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “Synthesis of Nanotubes via Catalytic Pyrolysis of Acetylene: A SEM study,” Carbon, Vol. 35, pp. 951-966, 1997.
[1.77] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, “Large-scale Synthesis of Aligned Carbon Nanotubes,” Science, Vol. 274, pp. 1701-1703, 1996.
[1.78] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, “Controlled Production of Aligned Nanotube Bundles,” Nature, Vol. 388, pp. 52-55, 1997.
[1.79] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, “Large-scale and Low-cost Synthesis of Single-walled Carbon Nanotubes by the Catalytic Pyrolysis of Hydrocarbons,” Appl. Phys. Lett., Vol. 72, pp. 3282-3284, 1998.
[1.80] Saito, Y. “Nanoparticles and Filled Nanocapsules,” Carbon, Vol. 33, pp. 979-988, 1995.
[1.81] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning Field Emission from Patterned Carbon Nanotube Films,” Appl. Phys. Lett., Vol. 76, pp. 2071-2073, 2000.
[1.82] T.F. Kuo, Z.Y. Juang, C.H. Tsai, Y.M. Tsau, H.F. Cheng and I.N. Lin, “Microwave-assisted Chemical Vapor Deposition Process for Synthesizing Carbon Nanotubes,” J. Vac. Sci. Technol. B, Vol. 19, No.3, pp. 1030-1033, 2001.
[1.83] J.H. Huang, C.C. Chuang, C.H. Tsai and W.J. Chen, “Excellent Field Emission from Carbon Nanotubes Grown by Microwave-heated Chemical Vapor Deposition,” J. Vac. Sci. Technol. B, Vol. 21, No. 4, pp. 1655-1659, 2003.
[1.84] [2.18] Makoto Okai , Tadashi Fujieda, Kishio Hidaka, Takahiko Muneyoshi and Tomio Yaguchi, “In Situ Transmission Electron Microscope Observation of Carbon Nanotubes in Electric Fields,” Jpn. J. of Appl. Phys., Vol. 44, No. 4A, pp. 2051–2055, 2005.
[1.85] [2.19] Kenneth A. Dean, Timothy P. Burgin, and Babu R. Chalamala, “Evaporation of Carbon Nanotubes During Electron Field Emission,” Appl. Phys. Lett., Vol. 79, No. 12, pp. 1873-1875 (2001)
[1.86] [2.20] Jean-Marc Bonard, and Christian Klinke, “Degradation and Failure of Carbon Nanotube Field Emitters,” Physical Review B, Vol. 67, pp. 115406 1-10, 2003.
[1.87] [2.21] J. C. She, N. S. Xu, S. Z. Deng, Jun Chen, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, and E. G. Wang, “Vacuum Breakdown of Carbon-nanotube Field Emitters on a Dilicon Tip,” Appl. Phys. Lett., Vol. 83, No. 13, pp. 2671-1673, 2003.
[1.88] [2.22] P. Vincent, S. T. Purcell, C. Journet, and Vu Thien Binh, “Modelization of Resistive Heating of Carbon Nanotubes During Field Emission,” Phys. Rev. B, Vol. 66, pp. 075406 1-5, 2002.
[1.89] C.C. Chuang, J.H. Huang, Z.Y. Juang, C.H. Tsai, S.P. Chen and I.N. Lin, , “The Effect of Nickel Thickness on the Structure and Field-emission Properties of Carbon Nanotubes,” Journal of Materials Science and Engineering, Vol. 34, No.2, pp. 112-116, 2002.
[1.90] J.H. Huang, C.C. Chuang and C.H. Tsai, (2003), “Effect of Nickel Thickness and Microwave Power on the Growth of Carbon Nanotubes by Microwave-heated Chemical Vapor Deposition,” Microelectronic Engineering, Vol. 66, pp. 10-16, 2003.
[1.91] [3.1] Ke Yu, Ziqiang Zhu, Min Xu, Qiong Li, Wei Liu, Qun Chen, “Soluble Carbon Nanotube Films Treated Using a Hydrogen Plasma for Uniform Electron Field Emission,” Surface and Coating Technology, Vol. 179, pp.63, 2004.
[1.92] [3.2] Jong Hyung Choi, Sun Hong Choi, Jae Hee Han, Ji Beom Yoo, and Chong Yun Park, “Enhanced Electron Emission from Carbon Nanotubes through Density Control Using in situ Plasma Treatment of Catalyst Metal,” Journal of Applied Physics, Vol. 94, pp. 487, 2003.
[1.93] [3.3] H. J. Lee, Y. D. Lee, W. S. Cho, B. K. Ju, Yun Hi Lee, J. H. Han, and J. K. Kim, “Field-emission Enhancement from Change of Printed Carbon Nanotube Morphology by an Elastomer,” Applied Physics Letters, Vol. 88, p. 093115, 2006.
[1.94] [3.4] H. J. Lee, S. I. Moon, J. K. Kim, Y. D. Lee, S. Nahm, J. E. Yoo, J. H. Han, Y. H. Lee, S. W. Hwang, and B. K. Ju, “Improvement of Field Emission from Printed Carbon Nanotubes by a Critical Bias Field,” Journal of Applied Physics, Vol. 98, pp. 016107, 2005.
[1.95] [3.5] Zhixin Yu, De Chen, Ba°rd Tøtdal, and Anders Holmen, “Effect of Catalyst Preparation on the Carbon Nanotube Growth Rate,” Catalyst Today, Vol. 100, pp. 261, 2005.
[1.96] Mei-Chao Chiang, Chi-Neng Mo, and Ming Chang, “CNT-Cathode Manufacturing for Emission Display,” the IDMC 07, Wed-S03-05, 2007.




















Chapter 2
[2.1] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning Field Emission from Patterned Carbon Nanotube Films,” Appl. Phys. Lett., Vol. 76, No. 15, pp. 2071-2073, 2000.
[2.2] X.Q. Wang, M. Wang, H.L. Ge, Q. Chen, and Y.B. Xu, “Modeling and Simulation for the Field Emission of Carbon Nanotubes Array,” Physica E, Vol. 30, pp. 101-106, 2005.
[2.3] Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, “Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel Dot,” Appl. Phys. Lett., Vol. 75, No. 8, pp. 1086-1088, 1999.
[2.4] Jean-Marc Bonard, Mirko Croci, Christian Klinke, Ralph Kurt, Olivier Noury, Nicolas Weiss, “Carbon Nanotube Films as Electron Field Emitters,” Carbon, Vol. 40, pp. 1715-1728, 2002.
[2.5] Jong Hyung Choi, Sun Hong Choi, Jae-Hee Han, Ji-Beom Yoo, Chong-Yun Park, Taewon Jung, SeGi Yu, In-Taek Han, and J. M. Kim, “Enhanced Electron Emission from Carbon Nanotubes through Density Control Using in situ Plasma Treatment of Catalyst Metal,” J. Appl. Phys., Vol. 94, No. 1, pp. 487-490, 2003.
[2.6] B. Kim, and W. M. Sigmund, “Density Control of Self-aligned Shortened Single-wall Carbon Nanotubes on Polyelectrolyte-coated Substrates,” Colloids and Surf. A, Vol. 266, pp. 91-96, 2005.
[2.7] Cheng Hang Hsu, Chia-Fu Chen, Chien-Chung Chen, and Shih-Yu Chan, “Density-controlled Carbon Nanotubes,” Diamond Relat. Mater., Vol. 14, pp. 739-743, 2005.
[2.8] Thomas Goislard De Monsabert, Jean Dijon, and Patrice Gadelle, “Density Control of Carbon Nanotubes and Filaments Films by Wet Etching of Catalyst Particles and Effects on Field Emission Properties,” Carbon, Vol. 43, pp. 2441-2452, 2005.
[2.9] Po-Lin Chen, Jun-Kai Chang, Fu-Ming Pan, and Cheng-Tzu Kuo, “Tube Number Density Control of Carbon Nanotubes on Anodic Aluminum Oxide Template,” Diamond Relat. Mater., Vol. 14, pp. 804-809, 2005.
[2.10] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, “Multilayered Metal Catalyst for Controlling the Density of Single-Walled Carbon Nanotube Growth,” Chem. Phys. Lett., Vol. 348, pp. 368-374, 2001.
[2.11] Chuan-Ping Juan , Kuo-Ji Chen, Chun-Chien Tsai, Kao-Chao Lin, Wei-Kai Hong, Chen-Yu Hsieh, Wen-Pin Wang, Rui-Ling Lai, Kuei-Hsien Chen, Li-Chyong Chen, and Huang-Chung Cheng, “Improved Field-Emission Properties of Carbon Nanotube Field-Emission Arrays by Controlled Density Growth of Carbon Nanotubes,” Jpn. J. Appl. Phys., Vol. 44, No. 1A, pp. 365-370, 2005.
[2.12] Sung Hoon Lim, Kyu Chang Park, Jong Hyun Moon, Hyun Sik Yoon, Didier Pribat, Yvan Bonnassieux, and Jin Jang, “Controlled Density of Vertically Aligned Carbon Nanotubes in a Triode Plasma Chemical Vapor Deposition System,” Thin Solid Films, Vol. 515, pp. 1380-1384, 2006.
[2.13] K.-Y.Lee , S. Hond , M. Katayama , T.Hirao, H.Mori, and K.Oura, “Controlling the Density of Vertically Aligned Carbon Nanotubes by DC Bias Sputtering with Gas Mixtures,” Diamond Relat. Mater., Vol. 13, pp. 1228-1231, 2004.
[2.14] Jong Hyung Choi, Tae Young Lee, Sun Hong Choi, Jae-Hee Han, Ji-Beom Yoo, Chong-Yun Park, Taewon Jung, Se Gi Yu, Whikun Yi, In-Taek Han, and J. M. Kim, “Control of Carbon Nanotubes Density through Ni Nanoparticle Formation Using Thermal and NH3 Plasma Treatment,” Diamond Relat. Mater., Vol. 12, pp. 794-798, 2004.
[2.15] Chuan-Ping Juan, Kao-Chao Lin, Rui-Ling Lai, Kuo-Jui Chang, and Huang-Chung Cheng, “Field Emission Improvement through Structure of Intermixture of Long and Short Carbon Nanotubes,” Jpn. J. Appl. Phys., Vol. 46, No. 2, pp. 859-862, 2007.
[2.16] H. Busta, Z. Tolt, Montgomery and A. Feinerman, “Field Emission from Teepee-shaped Carbon Nanotube Bundles,” J. Vac. Sci. Technol. B, Vol. 23, pp. 676-679, 2005.
[2.17] Chuan-Ping Juan, Chun-Chien Tsai, Kuei-Hsien Chen, Li-Chyong Chen, and Huang-Chung Cheng, “Effects of High-Density Oxygen Plasma Posttreatment on Field Emission Properties of Carbon Nanotube Field-Emission Displays,” Jpn. J. Appl. Phys., Vol. 44, No. 11, pp. 8231-8236, 2005.
[2.18] Makoto Okai , Tadashi Fujieda, Kishio Hidaka, Takahiko Muneyoshi and Tomio Yaguchi, “In Situ Transmission Electron Microscope Observation of Carbon Nanotubes in Electric Fields,” Jpn. J. of Appl. Phys., Vol. 44, No. 4A, pp. 2051–2055, 2005.
[2.19] Kenneth A. Dean, Timothy P. Burgin, and Babu R. Chalamala, “Evaporation of Carbon Nanotubes During Electron Field Emission,” Appl. Phys. Lett., Vol. 79, No. 12, pp. 1873-1875 (2001)
[2.20] Jean-Marc Bonard, and Christian Klinke, “Degradation and Failure of Carbon Nanotube Field Emitters,” Physical Review B, Vol. 67, pp. 115406 1-10, 2003.
[2.21] J. C. She, N. S. Xu, S. Z. Deng, Jun Chen, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, and E. G. Wang, “Vacuum Breakdown of Carbon-nanotube Field Emitters on a Dilicon Tip,” Appl. Phys. Lett., Vol. 83, No. 13, pp. 2671-1673, 2003.
[2.22] P. Vincent, S. T. Purcell, C. Journet, and Vu Thien Binh, “Modelization of Resistive Heating of Carbon Nanotubes During Field Emission,” Phys. Rev. B, Vol. 66, pp. 075406 1-5, 2002.
[2.23] Chao Liu, An-jen Cheng, Maurice Clark, and Yonhua Tzeng, “Effects of Interfacial Layers on Thermal Chemical Vapor Deposition of Carbon Nanotubes Using Iron Catalyst,” Diamond Relat. Mater., Vol. 14, pp. 835-840, 2005.
[2.24] M. Wang, K. P. Pramoda, and S. H. Goh, “Enhancement of Interfacial Adhesion and Dynamic Mechanical Properties of Poly(methyl methacrylate)/Multiwalled Carbon Manotube Composites with Amine-terminated Poly(ethylene oxide),” Carbon, Vol. 44, pp. 613-617, 2006.
[2.25] J. H. Han, S. H. Lee, A. S. Berdinsky, Y. W. Kim, J. B. Yoo, C. Y. Park, J. J. Choi, T. Jung, I. T. Han, and J. M. Kim, “Effects of Various Post-treatments on Carbon Nanotube Films for Reliable Field Emission,” Diamond Relat. Mater., Vol. 14, pp. 1891-1896, 2005.
[2.26] Paul C. P. Watts, Stephen M. Lyth, Ernest Mendoza, and S. Ravi P. Silva, “Polymer Supported Carbon Nanotube Arrays for Field Emission and Sensor Devices,” Appl. Phys. Lett., Vol. 89, pp. 103113 1-3, 2006.
[2.27] J. H. Park, J. S. Moon, J. H. Han, A. S. Berdinskiy, D. G. Kuvshinov, J. B. Yoo, C. Y. Park, J. W. Nam, J. H. Park, C. G. Lee, and D. H. Choe, “Effects of Binders and Organic Vehicles on the Emission Properties of Carbon Nanotube Paste,” Diamond Relat. Mater., Vol. 14, pp. 1463-1468, 2005.
























Chapter 3
[3.1] Kenneth A. Dean, Bernard F. Coll, Larry Dworsky, Emmett Howard, Hao Li, Michael R. Johnson, Scott V. Johnson, and James E. Jaskie, “Performance of Nanotube Field Emission Displays,” the IDMC 07, Wed-S06-01, 2007.
[3.2] Ke Yu, Ziqiang Zhu, Min Xu, Qiong Li, Wei Liu, Qun Chen, “Soluble Carbon Nanotube Films Treated Using a Hydrogen Plasma for Uniform Electron Field Emission,” Surface and Coating Technology, Vol. 179, pp.63, 2004.
[3.3] Jong Hyung Choi, Sun Hong Choi, Jae Hee Han, Ji Beom Yoo, and Chong Yun Park, “Enhanced Electron Emission from Carbon Nanotubes through Density Control Using in situ Plasma Treatment of Catalyst Metal,” Journal of Applied Physics, Vol. 94, pp. 487, 2003.
[3.4] H. J. Lee, Y. D. Lee, W. S. Cho, B. K. Ju, Yun Hi Lee, J. H. Han, and J. K. Kim, “Field-emission Enhancement from Change of Printed Carbon Nanotube Morphology by an Elastomer,” Applied Physics Letters, Vol. 88, p. 093115, 2006.
[3.5] H. J. Lee, S. I. Moon, J. K. Kim, Y. D. Lee, S. Nahm, J. E. Yoo, J. H. Han, Y. H. Lee, S. W. Hwang, and B. K. Ju, “Improvement of Field Emission from Printed Carbon Nanotubes by a Critical Bias Field,” Journal of Applied Physics, Vol. 98, pp. 016107, 2005.
[3.6] Zhixin Yu, De Chen, Ba°rd Tøtdal, and Anders Holmen, “Effect of Catalyst Preparation on the Carbon Nanotube Growth Rate,” Catalyst Today, Vol. 100, pp. 261, 2005.
[3.7] Mei-Chao Chiang, Chi-Neng Mo, and Ming Chang, “CNT-Cathode Manufacturing for Emission Display,” the IDMC 07, Wed-S03-05, 2007.
[3.8] (http://www.crct.polymtl.ca/), Center for Research in Computational Thermochemistry.
[3.9] F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, “Magnetic Nanostructures,” Advances in Physics, Vol. 47, No. 4, pp. 511-597, 1998.
[3.10] A. Zangwill, “Physics at Surfaces”, Cambridge University Press, Cambridge ,1988.
[3.11] Z. Yu, D. Chen, B. Tøtdal, and A. Holmen, “Effect of Catalyst Preparation on the Carbon Nanotube Growth rate” Catal.Today, Vol. 100, pp. 261-267, 2005.

















Chapter 4
[4.1] B. Q. Wei, Z. J. Zhang, P. M. Ajayan, and G. Ramanath, “Growing Pillars of Densely Packed Carbon Nanotubes on Ni-coated Silica,” Carbon, Vol. 40, pp. 47-51, 2002 .
[4.2] Michael J. Bronikowski, “CVD Growth of Carbon Nanotube Bundle Arrays,” Carbon, Vol. 44, pp. 2822-2832, 2006.
[4.3] Y. M. Wong, W. P. Kang, J. L. Davidson, B. K. Choi, W. Hofmeister, J. H. Huang, “Array Geometry, Size and Spacing Effects on Field Emission Characteristics of Aligned Carbon Nanotubes,” Diamond & Relat. Mater., Vol. 14, pp. 2078-2083, 2005.
[4.4] M. Katayama, K. Y. Lee, S. I. Honda, T. Hirao, and K. Oura, “Ultra-Low-Threshold Field Electron Emission from Pillar Array of Aligned Carbon Nanotube Bundles,” Japanese Journal of Applied Physics, Vol. 43, No. 6B, pp. L774-L776, 2004.
[4.5] W. A. de Heer, A. Chatelain, D. Urgate, “A Carbon Nanotube Field-Emission Electron Source,,” Science, Vol. 270, No. 5239, p. 1179, 1995.
[4.6] Y. Cheng, O. Zhou, C. R., “Electron Field Emission from Carbon Nanotubes,” Physique, Vol. 4, pp. 1021-1033, 2003.
[4.7] D. J. Lee, S. I. Monn, Y. H. Lee, J. E. Yoo, J. H. Park, J. Jang, B. K. Ju, “The Vacuum Packaging of a Flat Lamp Using Thermally Grown Carbon Nano Tubes,” Vacuum, Vol. 74, pp. 105-111, 2004.
[4.8] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning Field Emission from Patterned Carbon Nanotube films,” Appl. Phys. Lett., No. 76, pp. 2071-2073, 2000.
Chapter 5
[5.1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol.354, pp. 56-58, 1991.
[5.2] Y. Cui, Q. Wei, H. Park, Charles M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,,” Science, Vol. 293, pp. 1289-1292, 2001.
[5.3] S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao, “Carbon-nanotube-based Resonant-circuit Sensor for Ammonia,,” Appl. Phys. Lett., Vol. 80, pp. 4632-4634, 2002.
[5.4] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and Multi-wall Carbon Nanotube Field-effect Transistors,” Appl. Phys. Lett., Vol. 73, pp. 2447-2449, 1998.
[5.5] Y. C. Kim and E. H. Yoo, Jpn. J., “Printed Carbon Nanotube Field Emitters for Backlight Applications,,” Appl. Phys., Vol. 44, No. 15, pp. L454-L456, 2005.
[5.6] W. B. Choi, Y. H. Lee, N. S. Lee, J. H. Kang, S. H. Park, H. Y. Kim, D. S. Chung, S. M. Lee, S. Y. Chung, and J. M. Kim, Jpn. J., “Carbon-Nanotubes for Full-Color Field-Emission Displays,,” Appl. Phys., Vol. 39, No. 5A, pp. 2560-2564, 2000.
[5.7] Y. R. Cho, J. H. Lee, C. S. Hwang, Y. H. Song, H. S. Uhm, D. H. Kim, S. D. Ahn, C. H. Chung, B. C. Kim, and K. I. Cho, “Characterizations of Fine-pitched Carbon Nanotube Pixels for Field Emitter Arrays,,” Jpn. J. Appl. Phys., Vol. 41, No. 3A, pp. 1532-1535, 2002.
[5.8] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, “Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly,” J. of Appl. Phys., Vol. 97, pp. 041301-39, 2005.
[5.9] K. B. K. Teo, R.G. Lacerda, M. H. Yang, A. S. Teh, L. A. W. Robinson, S. H. Dalal, N. L. Rupesinghe, M. Chhowalla, S. B. Lee, D. A. Jefferson, D. G. Hasko, G. A. J. Amaratunga, W. L. Milne, P. Legagneux, L. Gangloff, E. Minoux, J. P. Schnell and D. Pribat, “Carbon Nanotube Technology for Solid State and Vacuum Electronics” IEE Proc.-Circuits Devices Syst., Vol. 151, p. 443-451, 2004.
[5.10] Y. M. Wong, W. P. Kang, J. L. Davidson, W. Hofmeister, S. Wei, J. H. Huang, “Growth and Profile Modification of Carbon Nanotubes Designed for Field Emission Applications by Hydrogen Plasma Pretreatment,” Diamond Relat. Mater., Vol. 15, pp. 1132-1137, 2005.
[5.11] C. G. Lee, S. J. Lee, S. H. Cho, E. J. Chi, B. G. Lee, S. H. Jeon, S. H. Ahn, S. B. Hong, and D. H. Choe, “Gated Carbon Nanotube Emitter with Low Driving Voltage” IEEE Electron Device Lett., Vol. 25, pp. 605-607, 2004.
[5.12] H. C. Cheng, K. J. Chen, W. K. Hong, F. G. Tantair, C. P. Lin, K. H. Chen, and Li-Chyong Chen, “Fabrication and Characterization of Low Turn-on Voltage Carbon Nanotube Field Emission Triodes,” Electrochem. and Solid-State Lett., Vol. 4, No. 8, pp. H15-H17, 2001.
[5.13] K. B. Kim, Y. H. Song, C. S. Hwang, C. H. Chung, J. H. Lee, I. S. Choi, and J. H. Park, “Efficient Electron Emissions from Printed Carbon Nanotubes by Surface Treatments,” J. Vac. Sci. Technol. B, Vol. 22, pp1331-1334, 2004.
[5.14] David S. Y. Hsu, “Microgating Carbon Nanotube Field Emitters by in situ Growth Inside Open Aperture Arrays,” Appl. Phys. Lett., Vol. 80, No. 16, pp.2988-2990, 2002
[5.15] Y. T. Janga, C. H. Choi, B. K. Ju, J. H. Ahn, Y. H. Lee, “Simple Approach to Fabricate Microgated Nanotubes Emitter with a Sidewall Protector,” Physica B, Vol. 334, pp. 9–12, 2003.
[5.16] M. Q. Ding, X. Li, G. Bai, J. J. Feng, F. Zhang, F. Liao, “Fabrications of Spindt-type Cathodes with Aligned Carbon Nanotube Emitters,” Appl. Surf. Sci., Vol. 251, pp. 201–204, 2005.
[5.17] Y. M. Wong, W. P. Kang, J. L. Davidson, B. K. Choi, W. Hofmeister, J. H. Huang, “Array Geometry, Size and Spacing Effects on Field Emission Characteristics of Aligned Carbon Nanotubes,” Diamond & Relat. Mater., Vol. 14, pp. 2078-2083, 2005.
[5.18] H. J. Lee, Y. D. Lee, W. S. Cho, B. K. Ju, Yun-Hi Lee, J. H. Han, and J. K. Kim, “Field-emission Enhancement from Change of Printed Carbon Nanotube Morphology by an Elastomer,” Appl. Phys. Lett., Vol. 88, pp.093115 1-3, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔