|
[1] ESD Association Standard Test Method ESD STM5.1-2001, for Electrostatic Discharge Sensitivity Testing – Human Body Model (HBM) – Component Level, 2001. [2] A. Wang, On-Chip ESD Protection for Integrated Circuits, Boston, Kluwer, 2001. [3] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, 2nd Edition, John Wiley & Sons, Ltd., England, 2002. [4] S. Voldman, ESD Physics and Devices, John Wiley & Sons, Ltd., England, 2004. [5] C. Duvvury, R. Rountree, and O. Adams, “Internal chip ESD phenomena beyond the protection circuit,” IEEE Trans. on Electron Devices, vol. 35, no. 12, pp. 2133–2139, Dec. 1988. [6] C. Johnson, T. J. Maloney, and S. Qawami, “Two unusual HBM ESD failure mechanisms on a mature CMOS process,” in Proc. EOS/ESD Symp., 1993, pp. 225–231. [7] V. Puvvada and C. Duvvury, “A simulation study of HBM failure in an internal clock buffer and the design issue for efficient power pin protection strategy,” in Proc. EOS/ESD Symp., 1998, pp. 104–110. [8] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173–183, Jan. 1999. [9] T. Furukawa, D. Turner, S. Mittl, M. Maloney, R. Serafin, W. Clark, J. Bialas, L. Longenbach, and J. Howard, “Accelerated gate-oxide breakdown in mixed-voltage I/O circuits,” in Proc. IEEE Int. Reliability Physics Symp., 1997, pp. 169–173. [10] E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection,” IEEE Electron Device Lett., vol. 4, no. 4, pp. 111–113, Apr. 1983. [11] S. Voldman, “ESD protection in a mixed voltage interface and multirail disconnected power grid environment in 0.5- and 0.25-μm channel length CMOS technologies,” in Proc. EOS/ESD Symp., 1994, pp. 125–134. [12] S. Dabral and T. J. Maloney, Basic ESD and I/O Design, John Wiley & Sons, Inc., New York, 1998. [13] M. Hargrove, S. Crowder, E. Nowak, R. Logan, L. Han, H. Ng, A. Ray, D. Sinitsky, P. Smeys, F. Guarin, J. Oberschmidt, E. Crabbe, D. Yee, and L. Su, “High-performance sub-0.08-μm CMOS with dual gate oxide and 9.7-ps inverter delay,” in IEDM Tech. Dig., 1998, pp. 627–630. [14] S. Poon, C. Atwell, C. Hart, D. Kolar, C. Lage, and B. Yeargain, “A versatile 0.25-μm CMOS technology,” in IEDM Tech. Dig., 1998, pp. 751–754. [15] M. Takahash, T. Sakurai, K. Sawada, K. Nogami, M. Ichida, and K. Matsud, “3.3V-5V compatible I/O circuit without thick gate oxide,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 1992, pp. 23.3.1–23.3.4. [16] M. J. M. Pelgrom and E. C. Dijkmans, “A 3/5 V compatible I/O buffer,” IEEE J. Solid-State Circuits, vol. 30, no. 7, pp. 823–825, Jul. 1995. [17] J. Conner, D. Evans, G. Braceras, J. Sousa, W. Abadeer, S. Hall, and M. Robillard, “Dynamic dielectric protection for I/O circuits fabricated in a 2.5-V CMOS technology interfacing to a 3.3-V LVTTL bus,” in Int. VLSI Circuits Symp. Tech. Dig., 1997, pp. 119–120. [18] G. Singh and R. Salem, “High-voltage-tolerant I/O buffers with low-voltage CMOS process,” IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1512–1525, Nov. 1999. [19] H. Sanchez, J. Siegel, C. Nicoletta, J. Nissen, and J. Alvarez, “A versatile 3.3/2.5/1.8-V CMOS I/O driver built in a 0.2-μm 3.5-nm Tox 1.8-V CMOS technology,” IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1501–1511, Nov. 1999. [20] A. J. Annema, G. Geelen, and P. De Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 528–538, Mar. 2001. [21] C.-H. Chuang and M.-D. Ker, “Design on mixed-voltage-tolerant I/O interface with novel tracking circuits in a 0.13-μm CMOS technology,” in Proc. IEEE Int. Symp. Circuits and Systems, 2004, pp. 577–580. [22] W. Anderson and D. Krakauer, “ESD protection for mixed-voltage I/O using nMOS transistors stacked in a cascode configuration,” in Proc. EOS/ESD Symp., 1998, pp. 54–71. [23] J. Miller, M. Khazhinsky, and J. Weldon, “Engineering the cascoded nMOS output buffer for maximum Vt1,” in Proc. EOS/ESD Symp., 2000, pp. 308–317. [24] M.-D. Ker, H.-C. Hsu, and J.-J. Peng, “ESD Implantation for sub-quarter-micron CMOS technology to enhance ESD robustness,” IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2126–2134, Oct. 2003. [25] V. A. Vashchenko, A. Concannon, M. Ter-Beek, and P. Hopper, “Physical limitation of the cascoded snapback nMOS ESD protection capability due to the non-uniform turn-off,” IEEE Trans. Device Mater. Reliab., vol. 4, no. 2 pp. 281–291, June 2004. [26] J.-H. Lee, J.-R. Shih, Y.-H. Wu, and T.-C. Ong, “The failure mechanism of high voltage tolerance IO buffer under ESD,” in Proc. IEEE Int. Reliability Physics Symp., 2003, pp. 269–276. [27] C.-Y. Huang, W.-F. Chen, S-Y Chuan, F.-C. Chiu, J.-C. Tseng, I-C. Lin, C.-J. Chao, L.-Y. Leu, and M.-D. Ker, “Design optimization of ESD protection and latchup prevention for a serial I/O IC,” Microelectron. Reliab., vol. 44, no. 2, pp. 213–221, Feb. 2004. [28] W. Morris, “Latchup in CMOS,” in Proc. IEEE Int. Reliability Physics Symp., 2003, pp. 76–84. [29] M.-D. Ker and W.-Y. Lo, “Methodology on extracting compact layout rules for latchup prevention in deep-submicron bulk CMOS technology,” IEEE Trans. Semicond. Manufact., vol. 16, no. 2 pp. 319–334, May 2003. [30] H. Ballan and M. Declercq, High Voltage Devices and Circuits in Standard CMOS Technologies, Kluwer Academic, 1998. [31] M. P. J. Mergens, W. Wilkening, S. Mettler, H. Wolf, A. Stricker, and W. Fichtner, “Analysis of lateral DMOS power devices under ESD stress conditions,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2128–2137, Nov. 2000. [32] C. Duvvury, F. Carvajal, C. Jones, and D. Briggs, “Lateral DMOS design for ESD robustness,” in IEDM Tech. Dig., 1997, pp. 375–378. [33] C. Duvvury, D. Briggs, J. Rodrigues, F. Carvajal, A. Young, D. Redwine, and M. Smayling, “Efficient npn operation in high voltage NMOSFET for ESD robustness,” in IEDM Tech. Dig., 1995, pp. 345–348. [34] C. Duvvury, J. Rodriguez, C. Jones, and M. Smayling, “Device integration for ESD robustness of high voltage power MOSFETs,” in IEDM Tech. Dig., 1994, pp. 407–410. [35] J.-H. Lee, J.-R. Shih, C.-S, Tang, K.-C. Liu, Y.-H. Wu, R.-Y. Shiue, T.-C. Ong, Y.-K. Peng, and J.-T. Yue, “Novel ESD protection structure with embedded SCR LDMOS for smart power technology,” in Proc. IEEE Int. Reliability Physics Symp., 2002, pp. 156–161. [36] V. De Heyn, G. Groeseneken, B. Keppens, M. Natarajan, L. Vacaresse, and G. Gallopyn, “Design and analysis of new protection structures for smart power technology with controlled trigger and holding voltage,” in Proc. IEEE Int. Reliability Physics Symp., 2001, pp. 253–258. [37] G. Bertrand, C. Delage, M. Bafleur, N. Nolhier, J. Dorkel, Q. Nguyen, N. Mauran, D. Tremouilles, and P. Perdu, “Analysis and compact modeling of a vertical grounded-base n-p-n bipolar transistor used as ESD protection in a smart power technology,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1373–1381, Sep. 2001. [38] M.-D. Ker and K.-H. Lin, “The impact of low-holding-voltage issue in high-voltage CMOS technology and the design of latchup-free power-rail ESD clamp circuit for LCD driver ICs,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1751–1759, Aug. 2005. [39] J.-H. Lee, J.-R. Shih, Y.-H. Wu, B.-K. Liew, and H.-L. Hwang, “An analytical model of positive HBM ESD current distribution and the modified multi-finger protection structure”, in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 1999, pp. 162–167. [40] N. Boswell, “Vacuum fluorescent display developments,” IEE Colloquium on Graphic Display Devices, 1989, pp. 3/1–3/2. [41] A. Slack, “Prospective developments in automotive instrumentation,” in Proc. IEEE Int. Electronics Manufacturing Technology Symp., 1998, pp. 10–15. [42] M.-D. Ker and T.-Y. Chen, “Substrate-triggered technique for on-chip ESD protection design in a 0.18-µm salicided CMOS process,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1050–1057, Apr. 2003. [43] M.-D. Ker, K.-H. Lin, and C.-H. Chuang, “On-chip ESD protection design with substrate-triggered technique for mixed-voltage I/O circuits in sub-quarter-micron CMOS process,” IEEE Trans. Electron Devices, vol. 51, no. 10, pp. 1628–1635, Oct. 2004. [44] M.-D. Ker and H.-C. Hsu, “ESD protection design for mixed-voltage I/O buffer with substrate-triggered circuit,” IEEE Trans. Circuits and Systems I, vol. 52, no. 1, pp. 44–53, Jan. 2005. [45] J. Smith, “A substrate triggered lateral bipolar circuit for high-voltage tolerant ESD protection applications,” in Proc. EOS/ESD Symp., 1998, pp. 63–71. [46] M.-D. Ker and C.-H. Chuang, “ESD protection design for mixed-voltage CMOS I/O buffers,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1046–1055, Aug. 2002. [47] S. Voldman and G. Gerosa, “Mixed-voltage interface ESD protection circuits for advanced microprocessors in shallow trench and LOCOS isolation CMOS technologies,” in IEDM Tech. Dig., 1994, pp. 277–280. [48] S. Voldman, G. Gerosa, V. Gross, S. Dickson, N. Furkay, and J. Slinkman, “Analysis of snubber-clamped diode-string mixed voltage interface ESD protection network for advanced microprocessors,” in Proc. EOS/ESD Symp., 1995, pp. 43–61. [49] M. Tong, R. Gauthier, and V. Gross, “Study of gated PNP as an ESD protection device for mixed-voltage and hot-pluggable circuit applications,” in Proc. EOS/ESD Symp., 1996, pp. 280–284. [50] T. Maloney and S. Dabral, “Novel clamp circuits for IC power supply protection,” in Proc. EOS/ESD Symp., 1995, pp. 1–12. [51] M.-D. Ker and K.-H. Lin, “Design on ESD protection schemes for IC with power-down-mode operation,” IEEE J. of Solid-State Circuits, vol. 39, no. 8, pp. 1378–1382, Aug. 2004. [52] E. R. Worley, R. Gupta, B. Jones, R. Kjar, C. Nguyen, and M. Tennyson, “Sub-micron chip ESD protection schemes which avoid avalanching junctions,” in Proc. EOS/ESD Symp., 1995, pp. 13–20. [53] M.-D. Ker, T.-Y. Chen, C.-Y. Wu, and H.-H. Chang, “ESD protection design on analog pin with very low input capacitance for high-frequency or current-mode applications,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1194–1199, Aug. 2000. [54] C.-H. Chen, Y.-K. Fang, C.-C. Tsai, S. Tu, K.-L. Chen, and M.-C. Chang, “High voltage tolerant ESD design for analog applications in deep submicron CMOS technologies,” in Proc. IEEE Custom Integrated Circuits Conf., 2002, pp. 89–92. [55] H.-H. Chang, M.-D. Ker, K.-T. Lee, and W.-H. Huang, “Output ESD protection using dynamic-floating-gate arrangement,” U.S. Patent # 6,034,552, Mar. 3, 2000. [56] M.-D. Ker and C.-H. Chuang, “ESD implantations in 0.18-μm salicided CMOS technology for on-chip ESD protection with layout consideration,” in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 2001, pp. 85–90. [57] M.-D. Ker and W.-J. Chang, “ESD protection design of low-voltage-triggered p-n-p devices and their failure modes in mixed-voltage I/O interfaces with signal levels higher than VDD and lower than VSS,” IEEE Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 602–612, Sep. 2005. [58] M.-D. Ker, W.-J. Chang, and W.-Y. Lo, “Low-voltage-triggered PNP devices for ESD protection design in mixed-voltage I/O interface with over-VDD and under-VSS signal levels” in Proc. IEEE Int. Symp. Quality Electronic Design (ISQED), 2004, pp. 433–438. [59] W.-J. Chang and M.-D. Ker, “Layout optimization on low-voltage-triggered PNP devices for ESD protection in mixed-voltage I/O interfaces,” in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 2004, pp. 213–216. [60] D. Neamen, Semiconductor Physics & Devices, 2nd ed., New York: McGraw-Hill, 1997. [61] G. Notermans, A. Heringa, M. Van Dort, S. Jansen, and F. Kuper, “The effect of silicide on ESD performance,” in Proc. IEEE Int. Reliability Physics Symp., 1999, pp. 154–158. [62] M.-D. Ker and C.-H. Chuang, “ESD protection design for high-speed I/O interfaces of stub series terminated logic (SSTL) in a 0.25-µm salicided CMOS process,” in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 2004, pp. 217–220. [63] K. Esmark, W. Stadler, M. Wendel, H. Goher, X. Guggenmos, and W. Fichtner, “Advanced 2D/3D ESD device simulation-a powerful tool already used in a pre-Si phase“ in Proc. EOS/ESD Symp., 2000, pp. 420–429. [64] A. Salman, R. Gauthier, W. Stadler, K. Esmark, M. Muhammad, C. Putnam, and D. Ioannou, “Characterization and investigation of the interaction between hot electron and electrostatic discharge stresses using NMOS devices in 0.13 μm CMOS technology” in Proc. IEEE Int. Reliability Physics Symp., 2001, pp. 219–225. [65] K. Nikawa, “Optical beam induced resistance change (OBIRCH): overview and recent results,” in Proc. 16th Annual Meeting of IEEE Lasers and Electro-Optics Society (IEOS), 2003, vol. 2, pp. 742–743. [66] L. Soon, D. Ling, M. Kuan, K.-W. Yee, D. Cheong, and G. Zhang, “Application of IR-OBIRCH to the failure analysis of CMOS integrated circuits,” in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 2003, pp. 86–91. [67] M.-D. Ker, W.-J. Chang, C.-T. Wang, and W.-Y. Chen, “ESD protection for mixed-voltage I/O in low-voltage thin-oxide CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Tech. Dig. Papers, 2006, pp. 546–547. [68] M.-D. Ker and K.-H. Lin, “Overview on electrostatic discharge protection designs for mixed-voltage I/O interfaces: design concept and circuit implementations,” IEEE Trans. Circuits and Systems I, vol. 53, no. 2, pp. 235–246, Feb. 2006. [69] M.-D. Ker, W.-Y. Chen, and K.-C. Hsu, “Design on power-rail ESD clamp circuit for 3.3-V I/O interface by using only 1-V/2.5-V low-voltage devices in a 130-nm CMOS process,” IEEE Trans. Circuits and Systems I, vol. 53, no. 10, pp. 2187–2193, Feb. 2006. [70] M.-D. Ker and W.-J. Chang, “Overview on ESD protection design for mixed-voltage I/O interfaces with high-voltage-tolerant power-rail ESD clamp circuits in low-voltage thin-oxide CMOS technology,” Microelectron. Reliab., vol. 47, no. 1, pp. 27-35, Jan. 2007. [71] T. Li, C.-H. Tsai, E. Rosenbaum, and S.-M. Kang, “Substrate resistance modeling and circuit-level simulation of parasitic device coupling effects for CMOS I/O circuits under ESD stress,” in Proc. EOS/ESD Symp., 1998, pp. 281–289. [72] X. Y. Zhang, K. Banerjee, A. Amerasekera, V. Gupta, Z. Yu, and R. W. Dutton, “Process and layout dependent substrate resistance modeling for deep sub-micron ESD protection devices,” in Proc. IEEE Int. Reliability Physics Symp., 2000, pp. 295–303. [73] M.-D. Ker, W.-J. Chang, M. Yang, C.-C. Chen, M.-C. Chan, W.-T. Shieh, and K.-L. Yen, “ESD protection structure with embedded high-voltage p-type SCR for automotive vacuum-fluorescent-display (VFD) applications,” in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 2005, pp. 67–70. [74] M.-D. Ker and W.-J. Chang, “On-chip ESD protection design for automotive vacuum-fluorescent-display (VFD) driver IC to sustain high ESD stress,” IEEE Trans. Device Mater. Reliab., in press, 2007. [75] B. Keppens, M. P. J. Mergens, C. S. Trinh, C. C. Russ, B. V. Camp, and K. G. Verhaege, “ESD protection solutions for high voltage technologies,” in Proc. EOS/ESD Symp., 2004, pp. 289–298. [76] M.-D. Ker, C.-Y. Wu, and H.-H. Chang, “Complementary-LVTSCR ESD protection circuit for submicron CMOS VLSI/ULSI,” IEEE Trans. Electron Devices, vol. 43, no. 4, pp. 588–598, Apr. 1996. [77] M.-D. Ker and C.-Y. Wu, “Modeling the positive feedback regenerative process of CMOS latchup by a positive transient pole method-part I: theoretical derivation,” IEEE Trans. Electron Devices, vol. 42, no. 6, pp. 1141–1148, June 1995. [78] M.-D. Ker and C.-Y. Wu, “Modeling the positive feedback regenerative process of CMOS latchup by a positive transient pole method-part II: quantitative evaluation,” IEEE Trans. Electron Devices, vol. 42, no. 6, pp. 1149–1155, June 1995. [79] M. J. Hargrove, S. Voldman, R. Gauthier, J. Brown, K. Duncan, and W. Craig, “Latchup in CMOS technology,” in Proc. IEEE Int. Reliability Physics Symp., 1998. pp. 269–278. [80] M.-D. Ker, “Lateral SCR devices with low-voltage high-current triggering characteristics for output ESD protection in submicron CMOS technology” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 849–860, Apr. 1998. [81] M.-D. Ker and H.-H. Chang, “How to safely apply the LVTSCR for CMOS whole-chip ESD protection without being accidentally triggered on,” J. Electrostatics, vol. 47, no. 2 pp. 215–248, Oct. 1999. [82] S. Pendharkar, R. Teggatz, J. Devore, J. Carpenter, T. Efland, and C.-Y. Tsai, “SCR-LDMOS: a novel LDMOS device with ESD robustness,” in Proc. Power Semiconductor Devices and ICs Symp., 2000, pp. 341–344. [83] IC Latch-up Test, EIA/JEDEC Stand. No. 78, Electron. Industries Assoc., 1997. [84] W.-J. Chang, M.-D. Ker, T.-H. Lai, T.-H. Tang, and K.-C. Su, “ESD robustness of 40-V CMOS devices with/without drift implant,” in Final Report of IEEE Integrated Reliability Workshop, 2006, pp. 167–170. [85] W.-J. Chang and M.-D. Ker, “The impact of drift implant and layout parameters on ESD robustness for on-chip ESD protection devices in 40-V CMOS technology,” IEEE Trans. Device Mater. Reliab., in press, 2007. [86] T. J. Maloney and N. Khurana, “Transmission line pulsing techniques for circuit modeling of ESD phenomena,” in Proc. EOS/ESD Symp., 1985, pp. 49–54. [87] M.-D. Ker and K.-H. Lin, “Double snapback characteristics in high voltage nMOFETs and the impact to on-chip ESD protection design,” IEEE Electron Device Lett., vol. 25, no. 9, pp. 640–642, Sep. 2004. [88] V. Parthasarathy, V. Khemka, R. Zhu, J. Whitfield, A. Bose, and R. Ida, “A double RESURF LDMOS with drain profile engineering for improved ESD robustness,” IEEE Electron Device Lett., vol. 23, no. 4, pp. 212–214, Apr. 2002. [89] S.-C. Huang, J.-H. Lee, S.-C. Lee, K.-M. Chen, M.-H. Song, C.-Y. Chiang, and M.-C. Chang, “Circuit and silicide impact on the correlation between TLP and ESD (HBM and MM),” in Final Report of IEEE Integrated Reliability Workshop, 2004, pp. 169–172.
|