( 您好!臺灣時間:2021/02/25 14:00
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):A Spread Spectrum Clock Generator for Serial ATA 6Gb/s Application
指導教授(外文):Shyh-Jye Jou
外文關鍵詞:Phase Locked Loopphase interpolationphase rotationspread spectrum clocking
  • 被引用被引用:0
  • 點閱點閱:628
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:184
  • 收藏至我的研究室書目清單書目收藏:0
我們所提出的展頻時脈產生器主要應用於Serial ATA 6Gbps中,向下展頻5000ppm同時採用三角波調變且調變頻率為30KHz。此展頻時脈產生器使用和差調變器及相位旋轉方式完成之。此電路是在90奈米互補式金氧半的製程下所製造。展頻時脈最大週期對週期時脈抖動為1.13ps並操作在1.4GHz時消耗7.57毫瓦。能量峰值所能降低的最大數量為20.6dB。晶片面積分為: 鎖相迴路主要電路 ,迴路濾波器 ,相位旋轉單位 。
Spread spectrum is to modulate the frequency of clock and to spread the clock energy in a wider spectrum. This would lead to a reduction of the peak level of the clock energy. In this thesis, we will describe the phase-locked loop (PLL) design considerations first. Then, we will introduce the steady-state and transient analysis of spread spectrum behavior. These can help us to express the SSCG design consideration with PLL parameters. We also use the interpolation technique to avoid the glitch problem due to the operation of multiplexer and provide a thermal code control to guarantee the monotonic behavior in the process of phase rotation.
In the PLL design, we achieve low jitter issue by using error amplifier to resolve the current mismatch in charge pump and a third order loop filter is adopted to reduce the reference spur. A passive resistor is presented in the VCO delay cell to reduce the Kvco gain and an additional cross-couple CMOS is also included to the delay cell to boost the operation of delay cell. Our spread spectrum clock generator (SSCG) for Serial ATA Specification is down spread 5000ppm with a triangular modulation profile and the modulation frequency is 30 kHz. A spread spectrum technique using PLL with a sigma delta modulator and phase rotation algorithm is proposed. This proposed architecture has been designed in a 90-nm CMOS process. The spread clocking has a peak-to-peak cycle-to-cycle jitter of 1.13ps and consumes 7.57mW at 1.4GHz. The EMI reduction in this circuit is about 20.6dB. The core area includes PLL Main Circuit ( ), Loop Filter ( ) and Phase Rotation Block ( ).
Chapter 1 Introduction 1
1.1 Introduction to High-Speed Serial Link 1
1.2 Timing Specifications and Application Issues 2
1.3 Motivation 5
1.4 Thesis Organization 6
Chapter 2 Principles of Phase-Locked Loop 8
2.1 Introduction to PLL 8
2.2 Analysis of PLL Linear Model 9
2.2.1 Analysis of Closed Loop Transfer Function 11
2.2.2 Analysis of Open Loop Transfer Function 13
Chapter3 Analysis of Spread Spectrum Clock Generator 18
3.1 Spread spectrum Mechanism 18
3.1.1 Introduction to Modulation Mechanism 18
3.1.2 Noise Transfer Function 21
3.2 Discrete-Time Open-Loop Criteria of PLL 23
3.3 Transient response of Spread Spectrum 28
3.3.1 Equivalent Difference Equation of SSC 28
3.3.2 Transient Response of SSC with different PLL system parameters 30
3.3.3 Effective Spread Frequency with Different Phase Jump 35
3.4 Overall Spread Spectrum Behavior 37
3.4.1 Spread Spectrum behavior without Quantization Noise 38
3.4.2 Sigma-Delta Modulation with Different Orders 42
3.4.3 Timing Impacts 47
Chapter 4 Algorithm of the Proposed Spread Spectrum Clock Generator 49
4.1 Concept of SSCG Using Phase Rotation 49
4.2 Analysis of Quantization Noise 52
4.3 Phase Rotation Mechanism 58
4.4 ΣΔ Modulator 61
Chapter 5 Circuit design of Spread Spectrum Clock Generator 64
5.1 Introduction 64
5.2 System architecture 65
5.3 Behavior Simulation 66
5.4 Circuit Implementation 68
5.4.1 Phase / Frequency Detector 69
5.4.2 Current Matching Charge Pump 70
5.4.3 3th Order Loop Filter 72
5.4.4 Voltage-Controlled Oscillator 73
5.4.5 Multiplexer and Interpolator 74
5.4.6 Divider 76
5.5 Circuit Simulation 77
5.6 Experimental Results 85
5.6.1 Layout and Pad Assignment 85
5.6.2 Measurement setup 88
Chapter 6 Conclusions 89
[1] Universal Srial Bus specification revision 2.0, Mar. 2000.
[2] R1394b Draft Standard for a High Performance Serial Bus (Supplement), P1394b Draft 1.3.1, Oct 15, 2001.
[3] Serial ATA II Electrical Specification Revision 2.5, October 27, 2005.
[4] M. Y. He and J. Poulton, “A CMOS Mixed-Signal Clock and Data Recovery Circuit for OIF CEI-6G+ Backplane Transceiver,” IEEE J. Solid-State Circuits, Vol. 41, pp. 597-606, March 2006.
[5] A. Kapoor, N. Jayakumar, and S. P. Khatri,“A novel clock distribution and dynamic de-skewing methodology,” Proc. of IEEE/ACM International Conference on Computer Aided Design, Nov. 2004, pp.626-631.
[6] R. B. Staszewski, J. L.Wallberg, S. Rezeq, C. M. Hung, O. E. Eliezer, S. K. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M. C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold,“All Digital PLL and Transmitter for Mobile Phones,” IEEE J. Solid State Circuits, vol. 40, pp. 2469-2482, Dec. 2005.
[7] F. Gardner, “Charge-pump phase-lock loops,” IEEE Trans. Commun., vol.COM-28, Nov. 1980 pp. 1849–1858.
[8] H. S. Li, Y. C. Cheng, and D. Puar, “Dual-Loop Spread-Spectrum Clock Generator,” in ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 1999, pp. 184-185.
[9] S. Damphousse, K. Ouici, A. Rizki and M. Mallinson, “All digital spread spectrum clock generator for EMI reduction” IEEE J. Solid State Circuits, vol. 42, pp. 145-150, Jan. 2007.
[10] M. Kokubo, T. Kawamoto, T. Oshima, T. Noto, M. Suzuki, S. Suzuki, T. Hayasaka, T. Takahashi, and J. Kasai, “Spread-Spectrum Clock Generator for Serial ATA using Fractional PLL Controlled by ΔΣ Modulator with Level Shifter,” in ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2005, pp. 160-161.
[11] H.R. Lee, O. Kim, G. Ahn, and D.K. Jeong, “A Low-Jitter 5000ppm Spread Spectrum Clock Generator for Multi-channel SATA Transceiver in 0.18um CMOS,” in ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2005 pp. 162 – 163.
[12] J. Kim, M. A. Horowitz, and G.-Y. Wei, “Design of CMOS Adaptive-bandwidth PLL/DLLs: a General Approach,” IEEE Trans. Circuits Syst. II, vol. 50, pp. 860, Nov. 2003.
[13] F. Herzel and B. Razavi, "A Study of Oscillator Jitter Due to Supply and Substrate Noise," IEEE Trans. Circuits Syst. II, Vol. 46, p56-62, Jan. 1999,.
[14] S. Kim, K. Lee, Y. Moon, D. K. Jeong, Y. Choi, and H. K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, pp. 691-700, May 1997.
[15] J.-S. Lee, M.-S. Keel, S.-I. Lim, and S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loops,” Electron. Lett., vol. 36, no. 23, pp. 1907-1908, Nov. 2000.
[16] J. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” in ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 1996, pp. 130–131.
第一頁 上一頁 下一頁 最後一頁 top
1. 王金國(2001)。成功學習的關鍵~自我調整學習。課程與教學季刊,5(1),145-164。
2. 林生傳(1982)。高中生「形地辨析型」與「形地混同型」之認知式態及其教育、職業興趣成就的關係。教育學刊,5,81-112。
3. 林建平(2005)。自律學習的理論與研究趨勢。國教新知,52(2),8-25。
4. 林清山、程炳林(1996)。國中生自我調整學習因素與學習表現之關係暨自我調整理解教學策略效果之研究。教育心理學報,28,15-58。
5. 林清文(2004)。教育心理學---自我調整學習。教育研究月刊,125,146-147。
6. 張景媛(1992)。自我調整、動機信念、選題策略與作業表現關係的研究暨自我調整訓練課程效果之評估。國立台灣師範大學教育心理與輔導學系教育心理學報,25,201-243。
7. 郭重吉(1987)。評介學習風格之有關研究。資優教育季刊,23,7-16。
8. 陳玉玲(2002)。自我調整學習理論探究及相關研究。教育學刊,19,27-45。
9. 程炳林、林清山(2001)。中學生自我調整學習量表之建構及其信效度研究。測驗年刊,48(1),1-41。
10. 程炳林、林清山(2002)。學習歷程前決策與後決策階段中行動控制的中介角色。教育心理學報,34(1),43-60。
11. 楊坤原(1996)。認知風格與科學學習成就的關係(一)。科學教育月刊,194,2-12。
12. 楊坤原(1996)。認知風格與科學學習成就的關係(二)。科學教育月刊,195,16-23。
13. 劉佩雲(2000)。自我調整學習模式之驗證。教育與心理研究,23, 173-205。
14. 劉佩雲(2002)。自我調整學習的課程與教學。課程與教學季刊,5(3),35-48。
系統版面圖檔 系統版面圖檔