|
1. T. Yamaguchi, Y. Ueda, Y. Matsushita, K. Koga, and T. Niina, “RGB multi-color LED dot-matrix units and their application to large-size flat displays,” Optoelectron., Devices Technol. 7, 221 (1992). 2. W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures,” Appl. Phys. Lett. 60, 1999 (1992). 3. D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, Jr., J. F. Schetzina, G. Cantwell, and W. C. Harasch, “High-brightness blue and green light-emitting diodes,” Appl. Phys. Lett. 66, 115 (1995). 4. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Lumin. 4, 63 (1971). 5. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys., 35, L74 (1996). 6. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "Characteristics of InGaN multi-quantum-well-structure laser diodes," Appl. Phys. Lett., 68, 3269 (1996). 7. S. Nakamura, "GaN-based blue/green semiconductor laser," IEEE Selected Topics in Quantum Electronics, 3, 435 (1997). 8. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94, 3675 (2003). 9. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., 48, 353 (1986). 10. H Amano, I Akasaki, K Hiramatsu, N Koide, and N Sawaki, “Effects of the buffer layer in metalorganic vapor phase epitaxy of GaN on sapphire substrate,” Thin Sol. Films, 163, 415 (1988). 11. S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., 30, L1705 (1991). 12. A. Usui, H. Sunakawa, A. Sakai1, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., 36, L988 (1997). 13. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices,” Jpn. J. Appl. Phys., 36, L1568 (1997). 14. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., 28, L2112 (1989). 15. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., 31, L139 (1992). 16. Z. Sitar, M. J. Paisley, B. Yan, J. Ruan, W. J. Choyke, and R. F. Davis, “Growth of AlN/GaN layered structures by gas source molecular-beam epitaxy,” J. Vac. Sci. & Technol. B, 8, 316 (1990). 17. I. D. Goepfert, E. F. Schubert, A. Osinsky, and P. E. Norris, “Demonstration of efficient p-type doping in AlxGa1-xN/GaN superlattice structures,” Electron Lett., 35, 1109 (1999). 18. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett., 75, 2444 (1999). 19. I. Akasaki, H. Amano, K. Itoh, N. Koide, and K. Manabe, "GaN-based ultraviolet/blue light emitting devices," Inst. Phys. Conf. Ser., 129, 851 (1992). 20. S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys. Lett., 64, 1687 (1994). 21. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys., 34, L807 (1995). 22. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukail, "Superbright green InGaN single-quantum-well-structure light-emitting diodes," Jpn. J. Appl. Phys., 34, L1332 (1995). 23. S. T. Yen and C. P. Lee, “Theoretical analysis of 630-nm band GaInP-AlGaInP strainedquantum-well lasers considering continuum states,” IEEE J. Quantum Electron. 33, 443 (1997). 24. S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B, 10, 1237 (1992). 25. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363 (1994). 26. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Optical gain and carrier lifetime of InGaN multi-quantum well structure laser diodes,” Appl. Phys. Lett. 69, 1568 (1996). 27. J. Y. Chang and Y. K. Kuo, “Simulation of blue InGaN quantum-well lasers,” J. Appl. Phys. 93, 4992 (2003). 28. M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura, and S. P. Denbaars, “Higher efficiency InGaN laser diodes with an improved quantum well capping configuration,” Appl. Phys. Lett. 81, 4275 (2002). 29. S. N. Lee, S. Y. Cho, H. Y. Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, and E. Yoon, “High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers,” Appl. Phys. Lett. 88, 111101-1 (2006). 30. S. P. Łepkowski and S. Krukowski, “Theoretical study of current overflow in GaN based light emitters with superlattice cladding layers,” J. Appl. Phys. 100, 016103-1 (2006). 31. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours,” Appl. Phys. Lett. 70, 1417 (1997). 32. S. Bidnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “High-temperature stimulated emission in optically pumped InGaN/GaN multiquantum wells,” Appl. Phys. Lett. 72, 1623 (1998). 33. Y.-H. Cho, J. J. Song, S. Keller, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Influence of Si doping on characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1128 (1998). 34. M. Godlewski, V. Y. Ivanov, E. Usakowska, R. Boek, S. Miasojedovas, S. Jurnas, K. Kazlauskas, A. ukauskas, E. M. Goldys, M. R. Phillips, T. Bottcher, S. Figge, D. Hommel, "Influence of n-type doping on light emission properties of GaN layers and GaN-based quantum well structures," Phys. Stat. Sol. (c), 2, 1056 (2005). 35. S. Nakamura, T. Mukai, and M. Senoh, "Si-doped InGaN films grown on GaN films," Jpn. J. Appl. Phys., 32, L16 (1993). 36. S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth 195, 258 (1998). 37. P. Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N. Sawaki, "Deep levels in the upper band-gap region of lightly Mg-doped GaN," Appl. Phys. Lett., 68, 1362 (1996) 38. M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, "The activation of Mg in GaN by annealing with minority-carrier injection," Appl. Phys. Lett., 72, 1101 (1998). 39. L. Sugiura, M. Suzuki, J. Nishio, K. Itaya, Y. Kokubun, and M. Ishikawa, "Characteristics of Mg-doped GaN and AlGaN grown by H2-ambient and N2-ambient metalorganic chemical vapor deposition," Jpn. J. Appl. Phys., 37, 3878 (1998). 40. D. H. Youn, M. Lachab, M. Hao, T. Sugahara, H. Takenaka, Y. Naoi, and S. Sakai, "Investigation on the p-type activation mechanism in Mg-doped GaN films grown by metalorganic chemical vapor deposition," Jpn. J. Appl. Phys., 38, 631 (1999). 41. P. Kozodoy, H. Xing, S. P. DenBaars, Umesh K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel, "Heavy doping effects in Mg-doped GaN," J. Appl. Phys., 87, 1832 (2000). 42. E. F. Schubert, W. Grieshaber, and I. D. Goepfert, “Enhancement of deep acceptor activation in semiconductorsby superlattice doping,” Appl. Phys. Lett. 69, 3737 (1996). 43. S. Nakamura, "InGaN multiquantum-well-structure laser diodes with GaN-AlGaN modulation-doped strained-layer superlattices," IEEE Selected Topics in Quantum Electronics, 4, 483 (1998). 44. K. Kumakura, and N. Kobayashi, “Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices,” Jpn. J. Appl. Phys. 38, L1012 (1999). 45. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999). 46. L. Hsu, and W. Walukiewicz, “Theoretical transport studies of p-type GaN/AlGaN modulation-doped heterostructures,” Appl. Phys. Lett. 74, 2405 (1999). 47. P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681 (1999). 48. S. Heikman, S. Keller, Daniel S. Green, S. P. DenBaars, and U. K. Mishra, “High conductivity modulation doped AlGaN/GaN multiple channel heterostructures,” J. Appl. Phys. 94, 5321 (2003). 49. M. Z. Kauser, A. Osinsky, A. M. Dabiran, and P. P. Chow, “Enhanced vertical transport in p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 85, 5275 (2004). 50. A. Bykhovski, B. Gelmont, and S. Shur, “The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys., 74, 6734 (1993). 51. O. Ambacher, R. Dimitrov, M. Stutzmann, B.E. Foutz, M.J. Murphy, J.A. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Chumbes, B. Green, A.J. Sierakowski, W.J. Schaff, and L.F. Eastman, “Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices,” phys. Stat. sol. (b), 216, 381 (1999). 52. J. Bardeen, “An improved calculation of the energies of metallic Li and Na,” J. Chem. Phys., 6, 367-371 (1938). 53. F. Seitz, The modern Theory of Solids, McGraw Hill, New York, 1940, p. 352. 54. S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B, 54, 2491 (1996). 55. M. G. Burt, “Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries,” Phys. Rev. B, 50, 7518 (1994). 56. P. N. Stavrinou, and R. van Dalen, "Operator ordering and boundary conditions for valence-band modeling: Application to [110] heterostructures," Phys. Rev. B, 55, 15456 (1997). 57. F. Mireles and S. E. Ulloa, “Ordered Hamiltonian and matching conditions for heterojunctions with wurtzite symmetry: GaN/AlxGa1-xN quantum wells,” Phys. Rev. B, 60, 13659 (1999). 58. G. E. Pikus and G. L. Bir, “Effects of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys.-Solid State, 1, 1502 (1960). 59. G. L. Bir and G.. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York, 1974. 60. T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, “Carrier mobility model for GaN,” S. S. Elec., 47, 111 (2003). 61. K. Kumakura, T. Makimoto, and N. Kobayashi, “Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., 93, 3370 (2003). 62. S. M. Sze, Physics of semiconductor devices, 2nd Ed. (John Wiley & Sons, Inc, 1981), p. 520. 63. B. Santic, “On the hole effective mass and the free hole statistics in wurtzite GaN,” Semicond. Sci. Technol., 18, 219 (2003). 64. S. M. Sze, Physics of semiconductor devices, 2nd Ed. (John Wiley & Sons, Inc, 1981), p. 255. 65. K. Horio, and H. Yanai, “Numerical modeling of heterojunctions including the thermionicemission mechanism at the heterojunction interface,” IEEE Trans. Electron Devices, 37, 1093 (1990). 66. J. S. Jang, T. Y. Seong, and S. R. Jeon, “Formation mechanisms of low-resistance and thermally stable Pd/Ni/Pd/Ru ohmic contacts to Mg-doped Al0.15Ga0.85N,” Appl. Phys. Lett., 91, 092129 (2007). 67. C. M. Krowne, “Semiconductor heterostructure nonlinear Poisson equation,” J. Appl. Phys., 65, 1602 (1989). 68. G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctionsmeasured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68, 2541 (1996). 69. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998). 70. E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures," J. Vac. Sci. Technol. B, 17, 1742 (1999). 71. L. H. Peng, C. W. Chuang, and L. H. Lou, "Piezoelectric effects in the optical properties of strained InGaN quantum wells," Appl. Phys. Lett., 74, 805 (1999). 72. H. Jiang, and J. Singh, “Gain characteristics of InGaN-GaN quantum wells,” IEEE J. Quantum Electron. 36, 1058 (2000). 73. C. Wetzel, H. Amano, and I. Akasaki, "Piezoelectric polarization in GaInN/GaN heterostructures and some consequences for device design," Jpn. J. Appl. Phys., 39, 2425 (2000). 74. M. E. Aumer, S. F. Leboeuf, B. F. Moody, and S. M. Bedair, "Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells," Appl. Phys. Lett., 80, 3803 (2001). 75. C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91, 531 (2002). 76. K. L. Bunker, R. Garcia, and P. E. Russell, “Scanning electron microscopy cathodoluminescence studies of piezoelectric fields in an InGaN/GaN quantum-well light-emitting diode,” Appl. Phys. Lett. 86, 082108 (2005). 77. S. Nakamura, “InGaN multiquantum-well-structure laser diodes with GaN-AlGaN modulation-doped strained-layer superlattices,” IEEE J. Quantum Electron. 4, 483 (1998). 78. S. Nakamura, “InGaN-based violet laser diodes,” Semicond. Sci. Technol. 14, R27 (1999). 79. M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,” Semicond. Sci. Technol., 16, 406 (2001). 80. F. D. Sala, A. D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J. M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74, 2002 (1999). 81. J. C. Harris, S. Kako, T. Someya, and Y. Arakawa, “Screening of the polarization field in InGaN single quantum wells,” Phys. Stat. Sol. 216, 423 (1999). 82. G. Franssen, T. Suski, and P. Perlin, “Fully-screened polarization-induced electric fields in blue/violet InGaN/GaN light-emitting devices grown on bulk GaN,” Appl. Phys. Lett. 87, 041109 (2005). 83. S. T. Yen, “Theory of resonant states of hydrogenic impurities in quantum wells,” Phys. Rev. B, 66, 075340 (2002). 84. S. Nagahama, T. Yanamoto, M. Sano and T. Mukai, "Wavelength dependence of InGaN laser diode characteristics," Jpn. J. Appl. Phys., 40, 3075 (2001). 85. S. H. Wei and A. Zunger, “Valence band splittings and band offsets of AlN, GaN, and InN,” Appl. Phys. Lett. 69, 2719 (1996). 86. C. Manz, M. Kunzer, H. Obloh, A. Ramakrishnan, and U. Kaufmann, “InxGa1–xN/GaN band offsets as inferred from the deep, yellow-red emission band in InxGa1–xN,” Appl. Phys. Lett. 74, 3993 (1999). 87. Y. J. Wang, S. J. Xu, Q. Li, D. G. Zhao, and H. Yang, “Band gap renormalization and carrier localization effects in InGaN/GaN quantum-wells light emitting diodes with Si doped barriers,” Appl. Phys. Lett., 88, 041903 (2006). 88. S. T. Yen and C. P. Lee, “Effects of doping in the active region of 630-nm band GaInP-AlGaInPtensile-strained quantum-well lasers,” IEEE Quantum Electron., 34, 1644 (1998). 89. K. Kumakura, T. Makimoto, and N. Kobayashi,” Enhanced hole generation in Mg-doped AlGaN/GaN superlattices due to piezoelectric field,” Jpn. J. Appl. Phys., 39, 2428 (2000). 90. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., 85, 3222 (1999). 91. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., 87, 334 (2000). 92. E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett., 80, 2737 (2001). 93. C. T. Foxon, S. V. Novikov, L. X. Zhao, and I. Harrison, “Isoelectronic doping of AlGaN alloys with As and estimates of AlGaN/GaN band offsets,” Appl. Phys. Lett., 83, 1166 (2003). 94. V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides,” J. Appl. Phys., 75, 7365 (1994).
|