(3.239.33.139) 您好!臺灣時間:2021/03/02 17:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃士哲
研究生(外文):Shyh-Jer Huang
論文名稱:氮化銦鎵/氮化鎵雷射二極體之理論研究
論文名稱(外文):Theoretical Studies of InGaN/GaN Laser Diodes
指導教授:顏順通
指導教授(外文):Shun-Tung Yen
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:95
中文關鍵詞:藍光雷射氮化鎵超晶格
外文關鍵詞:blue laser diodeGaNsuperlattice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們對氮化銦鎵/氮化鎵雷射二極體的活性區以及p型包覆層作理論性探討。在活性區方面,我們討論了溢出載子對臨界電流密度、增益頻譜以及自發性放射頻譜的影響,同時利用p型摻雜來降低溢出載子的負面效應。包覆區方面,我們分析氮化鋁鎵/氮化鎵超晶格的結構,找出造成高垂直阻抗的主要因素,並且提供最佳化的結構參數。
我們利用能量在量子井能障之上的綿密不連續次能帶來近似連續能帶,當載子溢出量子井時即佔據在這些能帶上。計算結果顯示,有沒有考慮這些連續能帶,對輻射電流密度以及增益頻譜都有顯著差異。我們進一步探討在改變量子井寬度或深度、共振腔損耗及溫度時,載子溢出效應對輻射電流密度、增益頻譜跟自發性放射頻譜所造成的影響。對較淺的量子井而言,這個效應特別明顯。它會使得自發性放射頻譜變寬,進而增加雷射二極體的臨界電流。較長的共振腔以及多層量子井可以有效的降低溢出載子所造成的負面效應。我們提供了在考慮溢出載子效應下最佳的量子井寬度以及層數。此外,為了更進一步降低臨界電流,我們探討活性區中引入n型與p型摻雜對雷射的影響。結果顯示,p型摻雜不但能有效降低因為溢出電子所造成的漏電流,而且可以讓增益頻譜變成更往峰值集中,能更有效率產生雷射光。而n型摻雜則恰恰產生相反的結果。我們進一步提出高p型摻雜的單量子井為最佳化結構,如果高p型摻雜在實作上不容易達成,則低濃度p型摻雜的雙量子井為最佳結構。
除了活性區,我們也對p型端的氮化鋁鎵/氮化鎵超晶格結構作最佳化。為了探討超晶格的垂直電阻,我們利用飄移擴散、穿隧以及熱放射電流方程式建立計算模型。我們發現造成高垂直電阻的主要因素是超晶格中能障的數量。即使這些能障能有效的提升p型雜質的解離率,它們本身卻形成電洞移動時主要的障礙。當這些能障夠窄,使得電洞在跨越能障時的散射效應可以忽略時,較寬的能障寬度反而能得到較小的垂直阻抗。我們的結果顯示,在能障的鋁濃度為20%且氮化鎵寬度固定2奈米時,當能障的寬度從2奈米增加到6奈米,垂直阻抗可以降低大概50%。
In this dissertation, the InGaN/GaN laser diode is theoretically studied. We have optimized its active region and the cladding layer composed of a p-type AlGaN/GaN superlattice by studying the spillover effect, the influence of dopants, and the key factor making the vertical resistance of the p-type superlattice large.
The effects of electron spillover from quantum wells on the optical property of InGaN/GaN laser diodes are theoretically studied in detail. Six-band model including strain effect is used to calculate valence band states. Continuous subbands are simulated deliberately by dense discretized subbands for the spillover electrons. The calculation results show obvious differences in the radiative current densities and the gain spectra between the cases with and without considering the spillover effect. We further investigate the spillover effect on the radiative current densities and the spontaneous emission spectra, with variations in the depth and the width of quantum wells, the total loss of the cavity, and the temperature. For shallow wells, the spillover effect is particularly important. It broadens both the gain and the spontaneous emission spectra and hence deteriorates the threshold of laser diodes. Such an effect can be alleviated by employing lasers with a long cavity and a multi-quantum-well active region. The concepts of the electron spillover studied in this work are not only applicable to the nitride lasers, but also to other kinds of quantum-well lasers.

The influences of the modulation-doping in InGaN/GaN laser diodes are also theoretically studied with the effects of electron spillover from quantum wells considered. The calculation results show that the threshold current can be significantly reduced by p-type modulation-doping around the wells but not by n-type doping, supposed that the layers are of a perfect quality and the impurity-induced defects are ignored. Also, the p-type modulation doping can make the threshold current more insensitive to the cavity loss compared with other cases. An optimized threshold current density can be achieved for single-quantum-well lasers by introducing p-type dopants. However, the dopant concentration is high and may be inaccessible. For double-quantum-well lasers an optimized low threshold current can be achieved with a slighter and practicable p-type doping level.

We also study the vertical transport of holes through p-type AlGaN/GaN superlattices with both Ga- and N-face polarities by drift-diffusion, tunneling, and thermionic emission models to find the key factors that dominantly influence the average vertical resistivity at different temperatures. It is shown that although the acceptors in the barriers are easily ionized to give a high spatially averaged density of holes, the barriers themselves are the main obstacle to the transport of holes through the superlattices. In our calculation results, the number of barriers in the superlattices dominantly affects the average vertical resistivity if the barriers are thin enough. So the resistivity can be reduced by decreasing the barrier number for a fixed total length of superlattices. Our results show that about 50% reduction in the resistivity can be excepted when the structure varies from Al0.11Ga0.8N(2 nm)/GaN(2 nm) to Al0.11Ga0.8N(6 nm)/GaN(2 nm).
ABSTRACT (Chinese) i
ABSTRACT (English) iii
ACKNOWLEDGMENTS vi
CONTENTS vii
TABLE CAPTIONS ix
FIGURE CAPTIONS x

CHAPTER 1 INTRODUCTION
1.1 Milestones of developing nitride-based optical devices 1
1.2 Motivation and background 12

CHAPTER 2 CALCULATION MEHTOD
2.1 Piezoelectric and spontaneous polarization 16
2.2 Band structure of quantized heterojunction 19
2.3 Calculation method for optical properties 26
2.4 Current transport in p-type layers 31
2.5 Numerical methods 34

CHAPTER 3 RADIATIVE LEAKAGE CURRENT
3.1 Some assumptions and definitions 41
3.2 Result and Discussion 43
3.3 Summary 71

CHAPTER 4 VERTICAL RESISTIVITY OF THE SUPERLATTICE
4.1 Some assumptions and definitions 73
4.2 Result and Discussion 74
4.3 Summary 83

CHAPTER 5 CONCLUSION AND SUGGESTION
5.1 Conclusion 84
5.2 Suggestion for Future Work 85

REFERENCE 87

VITA 94

PUBLICATION LIST 95
1. T. Yamaguchi, Y. Ueda, Y. Matsushita, K. Koga, and T. Niina, “RGB multi-color LED dot-matrix units and their application to large-size flat displays,” Optoelectron., Devices Technol. 7, 221 (1992).
2. W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures,” Appl. Phys. Lett. 60, 1999 (1992).
3. D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, Jr., J. F. Schetzina, G. Cantwell, and W. C. Harasch, “High-brightness blue and green light-emitting diodes,” Appl. Phys. Lett. 66, 115 (1995).
4. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Lumin. 4, 63 (1971).
5. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys., 35, L74 (1996).
6. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "Characteristics of InGaN multi-quantum-well-structure laser diodes," Appl. Phys. Lett., 68, 3269 (1996).
7. S. Nakamura, "GaN-based blue/green semiconductor laser," IEEE Selected Topics in Quantum Electronics, 3, 435 (1997).
8. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94, 3675 (2003).
9. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., 48, 353 (1986).
10. H Amano, I Akasaki, K Hiramatsu, N Koide, and N Sawaki, “Effects of the buffer layer in metalorganic vapor phase epitaxy of GaN on sapphire substrate,” Thin Sol. Films, 163, 415 (1988).
11. S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., 30, L1705 (1991).
12. A. Usui, H. Sunakawa, A. Sakai1, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., 36, L988 (1997).
13. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices,” Jpn. J. Appl. Phys., 36, L1568 (1997).
14. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., 28, L2112 (1989).
15. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., 31, L139 (1992).
16. Z. Sitar, M. J. Paisley, B. Yan, J. Ruan, W. J. Choyke, and R. F. Davis, “Growth of AlN/GaN layered structures by gas source molecular-beam epitaxy,” J. Vac. Sci. & Technol. B, 8, 316 (1990).
17. I. D. Goepfert, E. F. Schubert, A. Osinsky, and P. E. Norris, “Demonstration of efficient p-type doping in AlxGa1-xN/GaN superlattice structures,” Electron Lett., 35, 1109 (1999).
18. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett., 75, 2444 (1999).
19. I. Akasaki, H. Amano, K. Itoh, N. Koide, and K. Manabe, "GaN-based ultraviolet/blue light emitting devices," Inst. Phys. Conf. Ser., 129, 851 (1992).
20. S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys. Lett., 64, 1687 (1994).
21. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys., 34, L807 (1995).
22. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukail, "Superbright green InGaN single-quantum-well-structure light-emitting diodes," Jpn. J. Appl. Phys., 34, L1332 (1995).
23. S. T. Yen and C. P. Lee, “Theoretical analysis of 630-nm band GaInP-AlGaInP strainedquantum-well lasers considering continuum states,” IEEE J. Quantum Electron. 33, 443 (1997).
24. S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B, 10, 1237 (1992).
25. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363 (1994).
26. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Optical gain and carrier lifetime of InGaN multi-quantum well structure laser diodes,” Appl. Phys. Lett. 69, 1568 (1996).
27. J. Y. Chang and Y. K. Kuo, “Simulation of blue InGaN quantum-well lasers,” J. Appl. Phys. 93, 4992 (2003).
28. M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura, and S. P. Denbaars, “Higher efficiency InGaN laser diodes with an improved quantum well capping configuration,” Appl. Phys. Lett. 81, 4275 (2002).
29. S. N. Lee, S. Y. Cho, H. Y. Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, and E. Yoon, “High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers,” Appl. Phys. Lett. 88, 111101-1 (2006).
30. S. P. Łepkowski and S. Krukowski, “Theoretical study of current overflow in GaN based light emitters with superlattice cladding layers,” J. Appl. Phys. 100, 016103-1 (2006).
31. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours,” Appl. Phys. Lett. 70, 1417 (1997).
32. S. Bidnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “High-temperature stimulated emission in optically pumped InGaN/GaN multiquantum wells,” Appl. Phys. Lett. 72, 1623 (1998).
33. Y.-H. Cho, J. J. Song, S. Keller, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Influence of Si doping on characteristics of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1128 (1998).
34. M. Godlewski, V. Y. Ivanov, E. Usakowska, R. Boek, S. Miasojedovas, S. Jurnas, K. Kazlauskas, A. ukauskas, E. M. Goldys, M. R. Phillips, T. Bottcher, S. Figge, D. Hommel, "Influence of n-type doping on light emission properties of GaN layers and GaN-based quantum well structures," Phys. Stat. Sol. (c), 2, 1056 (2005).
35. S. Nakamura, T. Mukai, and M. Senoh, "Si-doped InGaN films grown on GaN films," Jpn. J. Appl. Phys., 32, L16 (1993).
36. S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth 195, 258 (1998).
37. P. Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N. Sawaki, "Deep levels in the upper band-gap region of lightly Mg-doped GaN," Appl. Phys. Lett., 68, 1362 (1996)
38. M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, "The activation of Mg in GaN by annealing with minority-carrier injection," Appl. Phys. Lett., 72, 1101 (1998).
39. L. Sugiura, M. Suzuki, J. Nishio, K. Itaya, Y. Kokubun, and M. Ishikawa, "Characteristics of Mg-doped GaN and AlGaN grown by H2-ambient and N2-ambient metalorganic chemical vapor deposition," Jpn. J. Appl. Phys., 37, 3878 (1998).
40. D. H. Youn, M. Lachab, M. Hao, T. Sugahara, H. Takenaka, Y. Naoi, and S. Sakai, "Investigation on the p-type activation mechanism in Mg-doped GaN films grown by metalorganic chemical vapor deposition," Jpn. J. Appl. Phys., 38, 631 (1999).
41. P. Kozodoy, H. Xing, S. P. DenBaars, Umesh K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel, "Heavy doping effects in Mg-doped GaN," J. Appl. Phys., 87, 1832 (2000).
42. E. F. Schubert, W. Grieshaber, and I. D. Goepfert, “Enhancement of deep acceptor activation in semiconductorsby superlattice doping,” Appl. Phys. Lett. 69, 3737 (1996).
43. S. Nakamura, "InGaN multiquantum-well-structure laser diodes with GaN-AlGaN modulation-doped strained-layer superlattices," IEEE Selected Topics in Quantum Electronics, 4, 483 (1998).
44. K. Kumakura, and N. Kobayashi, “Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices,” Jpn. J. Appl. Phys. 38, L1012 (1999).
45. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999).
46. L. Hsu, and W. Walukiewicz, “Theoretical transport studies of p-type GaN/AlGaN modulation-doped heterostructures,” Appl. Phys. Lett. 74, 2405 (1999).
47. P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, “Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices,” Appl. Phys. Lett. 74, 3681 (1999).
48. S. Heikman, S. Keller, Daniel S. Green, S. P. DenBaars, and U. K. Mishra, “High conductivity modulation doped AlGaN/GaN multiple channel heterostructures,” J. Appl. Phys. 94, 5321 (2003).
49. M. Z. Kauser, A. Osinsky, A. M. Dabiran, and P. P. Chow, “Enhanced vertical transport in p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 85, 5275 (2004).
50. A. Bykhovski, B. Gelmont, and S. Shur, “The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys., 74, 6734 (1993).
51. O. Ambacher, R. Dimitrov, M. Stutzmann, B.E. Foutz, M.J. Murphy, J.A. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Chumbes, B. Green, A.J. Sierakowski, W.J. Schaff, and L.F. Eastman, “Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices,” phys. Stat. sol. (b), 216, 381 (1999).
52. J. Bardeen, “An improved calculation of the energies of metallic Li and Na,” J. Chem. Phys., 6, 367-371 (1938).
53. F. Seitz, The modern Theory of Solids, McGraw Hill, New York, 1940, p. 352.
54. S. L. Chuang and C. S. Chang, “k⋅p method for strained wurtzite semiconductors,” Phys. Rev. B, 54, 2491 (1996).
55. M. G. Burt, “Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries,” Phys. Rev. B, 50, 7518 (1994).
56. P. N. Stavrinou, and R. van Dalen, "Operator ordering and boundary conditions for valence-band modeling: Application to [110] heterostructures," Phys. Rev. B, 55, 15456 (1997).
57. F. Mireles and S. E. Ulloa, “Ordered Hamiltonian and matching conditions for heterojunctions with wurtzite symmetry: GaN/AlxGa1-xN quantum wells,” Phys. Rev. B, 60, 13659 (1999).
58. G. E. Pikus and G. L. Bir, “Effects of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys.-Solid State, 1, 1502 (1960).
59. G. L. Bir and G.. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York, 1974.
60. T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, “Carrier mobility model for GaN,” S. S. Elec., 47, 111 (2003).
61. K. Kumakura, T. Makimoto, and N. Kobayashi, “Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., 93, 3370 (2003).
62. S. M. Sze, Physics of semiconductor devices, 2nd Ed. (John Wiley & Sons, Inc, 1981), p. 520.
63. B. Santic, “On the hole effective mass and the free hole statistics in wurtzite GaN,” Semicond. Sci. Technol., 18, 219 (2003).
64. S. M. Sze, Physics of semiconductor devices, 2nd Ed. (John Wiley & Sons, Inc, 1981), p. 255.
65. K. Horio, and H. Yanai, “Numerical modeling of heterojunctions including the thermionicemission mechanism at the heterojunction interface,” IEEE Trans. Electron Devices, 37, 1093 (1990).
66. J. S. Jang, T. Y. Seong, and S. R. Jeon, “Formation mechanisms of low-resistance and thermally stable Pd/Ni/Pd/Ru ohmic contacts to Mg-doped Al0.15Ga0.85N,” Appl. Phys. Lett., 91, 092129 (2007).
67. C. M. Krowne, “Semiconductor heterostructure nonlinear Poisson equation,” J. Appl. Phys., 65, 1602 (1989).
68. G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctionsmeasured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68, 2541 (1996).
69. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998).
70. E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures," J. Vac. Sci. Technol. B, 17, 1742 (1999).
71. L. H. Peng, C. W. Chuang, and L. H. Lou, "Piezoelectric effects in the optical properties of strained InGaN quantum wells," Appl. Phys. Lett., 74, 805 (1999).
72. H. Jiang, and J. Singh, “Gain characteristics of InGaN-GaN quantum wells,” IEEE J. Quantum Electron. 36, 1058 (2000).
73. C. Wetzel, H. Amano, and I. Akasaki, "Piezoelectric polarization in GaInN/GaN heterostructures and some consequences for device design," Jpn. J. Appl. Phys., 39, 2425 (2000).
74. M. E. Aumer, S. F. Leboeuf, B. F. Moody, and S. M. Bedair, "Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells," Appl. Phys. Lett., 80, 3803 (2001).
75. C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91, 531 (2002).
76. K. L. Bunker, R. Garcia, and P. E. Russell, “Scanning electron microscopy cathodoluminescence studies of piezoelectric fields in an InGaN/GaN quantum-well light-emitting diode,” Appl. Phys. Lett. 86, 082108 (2005).
77. S. Nakamura, “InGaN multiquantum-well-structure laser diodes with GaN-AlGaN modulation-doped strained-layer superlattices,” IEEE J. Quantum Electron. 4, 483 (1998).
78. S. Nakamura, “InGaN-based violet laser diodes,” Semicond. Sci. Technol. 14, R27 (1999).
79. M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,” Semicond. Sci. Technol., 16, 406 (2001).
80. F. D. Sala, A. D. Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J. M. Jancu, “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett. 74, 2002 (1999).
81. J. C. Harris, S. Kako, T. Someya, and Y. Arakawa, “Screening of the polarization field in InGaN single quantum wells,” Phys. Stat. Sol. 216, 423 (1999).
82. G. Franssen, T. Suski, and P. Perlin, “Fully-screened polarization-induced electric fields in blue/violet InGaN/GaN light-emitting devices grown on bulk GaN,” Appl. Phys. Lett. 87, 041109 (2005).
83. S. T. Yen, “Theory of resonant states of hydrogenic impurities in quantum wells,” Phys. Rev. B, 66, 075340 (2002).
84. S. Nagahama, T. Yanamoto, M. Sano and T. Mukai, "Wavelength dependence of InGaN laser diode characteristics," Jpn. J. Appl. Phys., 40, 3075 (2001).
85. S. H. Wei and A. Zunger, “Valence band splittings and band offsets of AlN, GaN, and InN,” Appl. Phys. Lett. 69, 2719 (1996).
86. C. Manz, M. Kunzer, H. Obloh, A. Ramakrishnan, and U. Kaufmann, “InxGa1–xN/GaN band offsets as inferred from the deep, yellow-red emission band in InxGa1–xN,” Appl. Phys. Lett. 74, 3993 (1999).
87. Y. J. Wang, S. J. Xu, Q. Li, D. G. Zhao, and H. Yang, “Band gap renormalization and carrier localization effects in InGaN/GaN quantum-wells light emitting diodes with Si doped barriers,” Appl. Phys. Lett., 88, 041903 (2006).
88. S. T. Yen and C. P. Lee, “Effects of doping in the active region of 630-nm band GaInP-AlGaInPtensile-strained quantum-well lasers,” IEEE Quantum Electron., 34, 1644 (1998).
89. K. Kumakura, T. Makimoto, and N. Kobayashi,” Enhanced hole generation in Mg-doped AlGaN/GaN superlattices due to piezoelectric field,” Jpn. J. Appl. Phys., 39, 2428 (2000).
90. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., 85, 3222 (1999).
91. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., 87, 334 (2000).
92. E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett., 80, 2737 (2001).
93. C. T. Foxon, S. V. Novikov, L. X. Zhao, and I. Harrison, “Isoelectronic doping of AlGaN alloys with As and estimates of AlGaN/GaN band offsets,” Appl. Phys. Lett., 83, 1166 (2003).
94. V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides,” J. Appl. Phys., 75, 7365 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔