(3.237.178.91) 您好!臺灣時間:2021/03/07 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊銘
研究生(外文):Gin-Ming Lin
論文名稱:具備新穎自我對準升高式源/汲極結構之低溫複晶矽薄膜電晶體元件之開發與寬通道效應之研究
論文名稱(外文):Development of Novel Self-Aligned Raised Source/Drain Structure for Low-Temperature Polysilicon Thin-Film Transistor and the Study of the Channel Width Widening Effect
指導教授:張國明
指導教授(外文):Kow-Ming Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:82
中文關鍵詞:低溫複晶矽薄膜電晶體自我對準升高式源汲極
外文關鍵詞:Low-temperature Poly Silicon Thin Film Transistorself-alignedraised source/drain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中我們專注於新的低溫複晶矽薄膜電晶體結構開發,並針對當通道寬度大於源汲極寬度時,寬通道效應所造成的電流增加做研究與討論。
首先,我們利用傳統熟知之金屬鑲嵌與化學機械研磨技術,用以開發出新穎之具備自我對準之閘極與增高式源汲極結構之低溫複晶矽薄膜電晶體元件,在此一結構中,鄰近源/汲極區之通道厚度將增厚,此一特徵將可有效降低元件關閉時汲極區附近之側向電場,可使此一結構之漏電流相較於傳統共平面結構至少降低十倍以上。我們更利用2-D模擬軟體進一步討論與研究側向電場在不同之通道深度處之數值變化。
接著,我們利用一次蝕刻或過蝕刻方式製作另一具有自我對準之增高式源汲極結構的低溫複晶矽薄膜電晶體元件。,此一結構相較於傳統增高式源汲極結構製作流程而言,可減少一次微影製程,並且製作更簡單。此外,由於利用閘極區域定義之光阻層作為下層通道區域定義之蝕刻阻擋層,因而此結構之通道寬度將與閘極區域寬度等寬,並大於源汲極區域之寬度。該特徵將可使此一新穎結構除了具有與先前開發之增高式源汲極結構相同低的漏電流外,更可提升薄膜電晶體之驅動電流與增加開關電流比。
最後,我們特別針對在通道寬度大於源汲極寬度之條件下薄膜電晶體驅動電流進行研究。由於現有之金氧半場效電晶體或複晶矽薄膜電晶體之驅動電流物理模型乃是建立在通道寬度與源汲極寬度等寬之前提條件,因而利用現行之驅動電流模型,我們並無法解釋薄膜電晶體之驅動電流在通道寬度大於源汲極寬度時的導通行為並進行預估驅動電流數值。因此,我們利用一具有通道寬度大於源汲極寬度特性之測試結構,進行薄膜電晶體之驅動電流的研究,並提出一簡單的關係式,解釋驅動電流與通道長度、通道寬度與源汲極寬度間之關聯性。
In this thesis, we concentrate our efforts on new Low-temperature Poly-Si TFT structure development, and discuss the effect of channel width widening on a Poly-Si TFT which will occur when the channel width is larger than the source/drain width.
First, we apply the damascene process and Chemical Mechanical Polish (CMP) Technology to develop a novel TFT structure with a self-aligned gate and raised source/drain (SAGRSD). In this structure, thick channel regions will be formed near the source/drain regions, this feature will suppress the lateral electric field near the drain region to reduce the OFF-state leakage current of the Poly-Si TFT at least one order of magnitude as comparing to the conventional co-planar Poly-Si TFT. We also used 2-D simulation tool, MEDICI, to verify that the lateral electric field near the drain region will be reduced by using this novel TFT structure, and discussed the lateral electric field in different channel depth in thick channel region near the source/drain regions.
Secondly, we also develop another new low-temperature Poly-Si TFT structure with self-aligned raised source/drain (SARSD) by one-step etching or over-etching method. For this new structure, thick source/drain regions and a thin channel region could be achieved with only four mask steps, which are less than that in conventional raised SD TFT’s. Moreover, the channel width of the proposed structure would be larger than its source/drain width. Wide channel width will improve the ON-state current due to carrier will flow from the source to the drain via new current flow paths occurred in the side channel region. Therefore, this structure will have the ON-state current and the ON/OFF current ratio of the Poly-Si TFT, and maintain low OFF-state leakage current as same as SAGRSD TFT.
Finally, we also find that current physical models for MOS or Poly-Si drain current are not suitable to explain the behavior of the drain current flow in the channel region of the SARSD TFT in which the channel width is wider than the source/drain width. Therefore, we use a test structure to clarify and define the relationship of the drain current among the channel length, the source/drain width and the channel width when the channel width is wider than the source/drain width.
Chinese Abstract………………………………………………...i
English Abstract……………………………………………….iii
Acknowledgment……………………………………………….v
Contents………………………………………………………..vi
Table Captions……………………………………….……….. ix
Figure Captions……………………………………………........x

Chapter 1 Introduction
1.1 Background and Motivation……………………………...1
1.2 Thesis Organization………………………………………4
References

Chapter 2 A Novel Low-Temperature Polysilicon Thin-Film Transistors with a Self-Aligned Gate and Raised Source/Drain Formed by Damascene Process
2.1 Introduction……………………………………………..14
2.2 Device Fabrication………………………………………15
2.3 Result and Discussion…………………………………...17
2.4 Summary………………………………………………...19
References

Chapter 3 A Novel Four-Mask Step Low-Temperature Polysilicon Thin-Film Transistors with Self-Aligned Raised Source/Drain (SARSD)
3.1 Introduction……………………………………………..34
3.2 Device Fabrication………………………………………35
3.3 Result and Discussion…………………………………...37
3.4 Summary………………………………………………...39
References

Chapter 4 Effect of Channel Width Widening on a Poly-Si Thin-Film Transistor Structure in the Linear Region
4.1 Introduction……………………………………………..52
4.2 Device Fabrication………………………………………54
4.3 Result and Discussion…………………………………...55
4.3.1 Simulation Results of the Test Structure ( Wch > Wsd) and the Conventional Structure ( Wch = Wsd)………55
4.3.2 Equivalent Circuit of the Channel Region of the Test Structure ( Wch > Wsd ) in the Linear Region……….57
4.3.3 Electrical Characteristics of the Test Structure ( Wch > Wsd) and the Conventional Structure ( Wch = Wsd) in the Linear Region…………………………………..58
4.3.4 Relationship among the ON-state Drain Current or the ON-state Drain Current Gain and the Channel Length, the Side-Channel Width and the Source/Drain Width in the Linear Region……………………..……………….60
4.4 Summary………………………………………………...63
References
Chapter 5 Conclusion and Future Works
5.1 Conclusion………………………………………………78
5.2 Future works…………………………………………….79
Vita…………………………………………………………………..…81
Publication Lists………………………………………………………..82
[1.1] S. J. Battersby, “System on panel for mible displays,” in Tech. Dig. AMLCD, 2001, pp. 5-8.
[1.2] K. Chung, M. P. Hong, C. W. Kim, and I. Kang, “Needs and solutions of future flat panel display for information technology industry,” in IEDM Tech. Dig.,2002.
[1.3] N. Sasaki, A. Hara, F. Takeuchi, Y.Mishima, T. Kakehi, K. Yoshino, and M. Takei, “High throughput CW-laser lateral crystallization for low-temperature poly-Si TFTs an fabrication of 16 bit SRAMs and 270 MHz shift registers,” in SID Techs. Dig., 2002, pp. 154-157.
[1.4] H. J. Kim, D. Kim, J. H. Lee, I. G. Kim, G. S. Moon, J. H. Huh, J. W. Hwang, S. Y. Joo, K. W. Kim, and J. H. Souk, “A 7-inch full-color low temperature poly-Si TFT-LCD,” in SID’99 Dig., 1999.
[1.5] Yojiro Matsueda, Satoshi Inoue, and Tatsuya Shimoda, “Concept of System on Panel,” in Tech. Dig. AMLCD, 2001, pp. 77-80.
[1.6] K. Kanzaki, “Poly-Si TFT technology for system on glass,” in Tech. Dig. AMLCD, 2001, pp. 71-74.
[1.7] M. K. Hatalis, and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, pp. 2260-2266, Apr. 1988.
[1.8] T. Yoshida, M. Kinugawa, S. Kanbayashi, S. Onga, M. Ishihara, and Y. Mikata, “Crystallization technology for low voltage operated TFT,” in IEDM Tech.Dig., pp. 843-846, 1991.
[1.9] S. Onga, Y. Mizutani, K. Taniguchi, M. Kashiwagi, K. Shibata, and S. Kohyama, “Characterization of polycrystalline silicon MOS transistors and its film properities,” Jpn. J. Appl. Phys., pt. 2, vol. 21, no. 10, pp. 1472-1478, Oct. 1982.
[1.10] C. Hayzelden, and J. L. Batstone, “Silicide formation and silicon-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys., vol. 73, pp. 8279-8289, Oct. 1993.
[1.11] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., vol. 84, pp. 194-200, July 1998.
[1.12] M. Wong, Z. Jin, G. A. Bhat, P. C. Wong, and H. S. Kwok, “Characterization of the MIC/MILC interface and its effects on the performance of MILC thin-film transistors,” IEEE Trans. Electron Devices, vol. 47, pp, 1061-1067, May 2000.
[1.13] S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Gowers, “Excimer-laser-annealed poly-Si thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp, 407-413, Feb. 1993.
[1.14] G. K. Giust, T. W. Sigmon, J. B. Boyce, and J. Ho, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, pp. 77-79, Feb. 1999.
[1.15] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, “High-performance TFT’s fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Trans. Electron Devices, vol. 36, pp. 2868-2872, Dec. 1989.
[1.16] T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystallized poly-Si thin film transistors,” IEEE Electron Device Lett., vol. 24, pp. 457-459, July 2003.
[1.17] H. C. Lin, K. L. Yeh, R. G.. Huang, C. Y. Lin, and T. Y. Huang, “Schottky barrier thin-film transistor (SBTFT) with silicided source/drain and field-induced drain extension,” IEEE Electron Device Lett., vol. 22, pp. 179-181, Apr. 2001.
[1.18] H. C. Lin, C. M. Yu, C. Y. Lin, K. L. Yeh, T. Y. Huang, and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device Lett., vol. 22, pp. 26-28, Jan. 2001.
[1.19] M. C. Lee, S. H. Jung, I. H. Song, and M. K. Han, “A new poly-Si TFT structure with air cavities at the gate-oxide edges,” IEEE Electron Device Lett., vol. 22, pp. 539-541, Nov. 2001.
[1.20] J. Y. Nahm, J. H. Lan, and J. Kanicki, “Hydrogenated amorphous-silicon thin-film transistor structure with the buried field plate,” in IEDM Tech. Dig., pp. 309-312, 1999.
[1.21] K. M. Chang, Y. H. Chung, C. G. Deng, Y. F. Chung, and J. H. Lin, “Characterization of the novel polysilicon TFT with a subgate coupling structure” IEEE Trans. Electron Devices, vol. 49, pp. 564-567, Apr. 2002.
[1.22] C. M. Park, B. H. Min, and M. K. Han, “Novel offset gated poly-Si TFTs with subgate,” IEEE Trans. Electron Devices, vol. 46, pp. 1402-1405, July 1999.
[1.23] K. M. Chang, Y. H. Chung, G. M. Lin, J. H. Lin, and C. G. Deng, “A novel high-performance poly-Si thin film transistor with a self-aligned thicker sub-gate oxide near the drain/source regions,” IEEE Electron Device Lett., vol. 22, pp. 472-474, Oct. 2001.
[1.24] M. Yu, H. C. Lin, G. H. Chen, T. Y. Huang, and T. F. Lei, “Characteristics of polycrystalline silicon thin-film transistors with electrical source/drain extensions induced by a bottom sub-gate,” Jpn. J. Appl. Phys., vol. 41, pp. 2815-2820, May 2002.
[1.25] M. C. Lee, S. J. Park, M. Y. Shin, and M. K. Han, “Characteristics of asymmetric dual-gate poly-Si TFTs for kink current reduction,” in SID Tech. Dig., 2003, pp. 252-255.
[1.26] A. Kumar, J. K. O. Sin, C. T. Nguyen, and P. K. Ko, “Kink-free polycrystalline silicon double-gate elevated-channel thin-film transistors,” IEEE Trans. Electron Devices, vol. 45, pp. 2514-2520, Dec. 1998.
[1.27] S. Zhang, R. Han, J. K. O. Sin, and M. Chan, “Implementation and characterization of self-aligned double-gate TFT with thin channel and thick source/drain,” IEEE Trans. Electron Devices, vol. 49, pp. 564-567, May 2002.
[1.28] S. Zhang, R. Han, J. K. O. Sin, and M. Chan, “A novel self-aligned double-gate TFT technology,” IEEE Electron Device Lett., vol. 22, pp. 530-532, Nov. 2001.
[1.29] P. S. Shih, T. C. Chang, T. Y. Huang, C. F. Yeh, and C. Y. Chang, “Characterization and reliability of lightly-doped-drain polysilicon thin-film transistors with oxide sidewall spacer formed by one-step selective liquid phase deposition” Jpn. J. Appl. Phys., vol. 39, pp. 5758-5762, Oct. 2000.
[1.30] B. H. Min, and J. Kanicki, “Electrical characteristics of new LDD poly-Si TFTstructure tolerant to process misalignment,” IEEE Electron Device Lett., vol. 20, pp. 335-337, July 1999.
[1.31] S. Zhang, R. Han, and M. J. Chan, “A novel self-aligned bottom gate poly-Si TFT with in-situ LDD,” IEEE Electron Device Lett., vol. 22, pp. 393-395, Aug. 2001.
[1.32] K. Y. Choi, and M. K. Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., vol. 17, pp. 566-568, Dec. 1996.
[1.33] C. H. Fang, D. H. Deng, S. C. Chang, and Y. M. Tsai, “Fullyself-aligned low-temperature poly-Si TFT process with symmetric LDD structure,” in SID Tech. Dig., 2003, pp. 1318-1321.
[1.34] M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” in IEDM Tech. Dig., pp. 523-526, 1997.
[1.35] Z. Meng, T. Ma, and M. Wong, “Suppression of leakage current in low-temperature metal-induced unilaterally crystalline silicon thin film transistor using an improved process sequence and a gate-modulated lightly-doped drain structure,” in IEDM Tech. Dig., pp. 755-758, 2001.
[1.36] D. H. Kim, P. M. Choi, K. W. Chung, T. Uemoto, and C. W. Kim, “Development of 5’ poly-Si transflective panel by 7-mask process, operated with P-MOS circuit,” in SID Tech. Dig., 2003, pp. 348-349.
[1.37] Y. A. El-Mansy and A. R. Boothroyd, “A simple two-dimensional model for IGFET operation in the saturation region,” IEEE Trans. Electron Devices, vol. 24, p. 254, 1977.
[1.38] P. K. Ko, R. S. Muller, and C. Hu, “A unified model for hot-electron currents in MOSFET’s,” in IEDM Tech. Dig., pp. 600-604, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔