跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏宏全
研究生(外文):Hung-Chuan Yen
論文名稱:尖狀氧化鋅奈米柱陣列之製備與場發射特性之研究
論文名稱(外文):Study on Fabrication and Field Emission Properties of Sharp ZnO Nanorod Array
指導教授:曾俊元
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:79
中文關鍵詞:氧化鋅場發射蝕刻奈米柱
外文關鍵詞:zinc oxidefield emissionetchnanorod
相關次數:
  • 被引用被引用:1
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
近年來,利用奈米材料當作場發射顯示器的發射源已被廣泛地研究,其中以低溫製備的氧化鋅奈米柱最受到注意。但氧化鋅奈米柱本身場發射特性不足以應用於場發射顯示器上,因此在本論文中,我們藉由濕式與乾式蝕刻的方式,將柱狀的氧化鋅變成尖狀,以改善其場發射特性。濕式蝕刻是用稀釋的醋酸去蝕刻未退火與退火過的奈米柱,而乾式蝕刻是用氬離子轟擊奈米柱。為了更進一步提升其場發射特性,我們結合濕式與乾式蝕刻的二段蝕刻去形成更尖銳的奈米柱。經量測結果顯示利用二段蝕刻出的尖狀氧化鋅奈米柱,具有最佳的場發射特性與穩定性,其可降低兩倍以上的工作電壓,如此可減少場發射顯示器的功率消耗。
In recent years, nanostructures used as emitter sources of field emission display have been researched extensively. ZnO nanorods fabricated by low process temperature attract much attention specifically. But they can not be applicable to field emission display due to bad field emission properties themselves. To improve the properties, we use wet and dry etching to sharpen ZnO nanorods in this thesis. For wet etching, we use dilute acetic acid to etch the non-annealed and the annealed nanorods. For dry etching, we use argon ion to bombard nanorods. Also, to improve the properties further, two-step etching combining wet with dry etching is used to form sharper nanorods. From our results, two-step etching exhibits the best field emission properties and stability. It can reduce over twice in the work voltage so that power consumption of field emission is lowered effectively.
Chapter 1 Introduction ........................................1
1.1 Basic Properties of Zinc Oxide.............................1
1.2 Field Emission Display.....................................2
1.3 Synthesis of Zinc Oxide Nanorods ..........................4
1.3.1 VLS Growth Method .......................................4
1.3.2 Vapor Solid (VS) Growth Method ..........................5
1.3.3 Template-Based Synthesis ................................5
1.3.4 Hydrothermal Growth Method ..............................5
1.4 Field Emission Principle...................................6
1.5 Sharp Zinc Oxide Nanorods .................................8
1.6 Optical Properties of Zinc Oxide...........................9
Chapter 2 Experiment Details .................................17
2.1 Sample Preparation .......................................17
2.1.1 Cleaning Wafer..........................................17
2.1.2 Deposition of ZnO Seed Layer ...........................17
2.1.3 Thermal Treatment of ZnO Seed Layer ....................17
2.1.4 Growth of ZnO Nanorod Array.............................18
2.1.5 Fabrication of Sharp Nanorods ..........................18
2.2 Measurement and Analysis..................................19
2.2.1 X-ray Diffraction.......................................19
2.2.2 Four Point Probe .......................................20
2.2.3 Scanning Electron Microscopy (SEM) .....................20
2.2.4 Transmission Electron Microscopy (TEM) .................21
2.2.5 Ultraviolet-Visible Spectrophotometer...................21
2.2.6 Cathodoluminescence (CL) ...............................22
2.2.7 Field Emission Measurement..............................22
Chapter 3 Results and Discussion .............................25
3.1 ZnO Seed Layer ...........................................25
3.1.1 XRD Analysis of Seed Layer..............................25
3.1.2 SEM Analysis of Seed Layer .............................25
3.1.3 Electrical Analysis of Seed Layer.......................26
3.1.4 Optical Analysis of Seed Layer .........................26
3.2 ZnO Nanorod Arrays .......................................28
3.2.1 SEM Analysis of Nanorod Growth..........................28
3.2.1.1 The Influence of Growth Concentration ................28
3.2.1.2 The Influence of Growth Time..........................28
3.2.2 XRD Analysis of Nanorods ...............................29
3.2.3 Optical Analysis of Nanorods............................29
3.2.4 Field Emission Measurement of Nanorods..................30
3.3 Sharp ZnO Nanorod Array ..................................32
3.3.1 Etching of Non-Annealed Nanorods by Acid................32
3.3.1.1 The SEM Analysis of Morphology .......................32
3.3.2 Etching of Annealed Nanorods by Acid ...................34
3.3.2.1 The SEM Analysis of Morphology .......................34
3.3.2.2 The XRD Analysis of Structure ........................35
3.3.2.3 The Optical Analysis..................................36
3.3.2.4 The Field Emission Measurement........................36
3.3.3 Etching of Nanorods by Plasma...........................37
3.3.3.1 The SEM Analysis of Morphology .......................37
3.3.3.2 The TEM Analysis of Structure.........................38
3.3.3.3 The XRD Analysis of Structure.........................38
3.3.3.4 The Field Emission Measurement........................39
3.3.4 Two-Step Etching .......................................39
3.3.4.1 The SEM Analysis of Morphology .......................40
3.3.4.2 The Field Emission Measurement........................40
3.3.5 Field Emission Property Comparisons of Sharp Nanorods...41
Chapter 4 Conclusion .........................................71
References....................................................73
[1] Pearton, S. J., et al. "Recent Progress in Processing and Properties of ZnO."
Progress in Materials Science 50, 3, pp.293-340, 2005.
[2] Ryu, Y. R., et al. "Next Generation of Oxide Photonic Devices: ZnO-Based
Ultraviolet Light Emitting Diodes." Applied Physics Letters 88, 24, pp.241108,
2006.
[3] Tang, Z. K., et al. "Room-Temperature Ultraviolet Laser Emission from
Self-Assembled ZnO Microcrystallite Thin Films." Applied Physics Letters 72,
25, pp.3270-2, 1998.
[4] Hiramatsu, M., et al. "Transparent Conducting ZnO Thin Films Prepared by XeCl
Excimer Laser Ablation." Journal of Vacuum Science & Technology A-Vacuum
Surfaces and Films 16, 2, pp.669-73, 1998.
[5] Gorla, C. R., et al. "Structural, Optical, and Surface Acoustic Wave Properties of
Epitaxial ZnO Films Grown on (01(1)Over-bar2) Sapphire by Metalorganic
Chemical Vapor Deposition." Journal of Applied Physics 85, 5, pp.2595-602,
1999.
[6] Wang, Z. L., and J. H. Song. "Piezoelectric Nanogenerators Based on Zinc Oxide
Nanowire Arrays." Science 312, 5771, pp.242-6, 2006.
[7] Meulenkamp, E. A. "Synthesis and Growth of ZnO Nanoparticles." Journal of
Physical Chemistry B 102, 29, pp.5566-72, 1998.
[8] Xu, W. L., et al. "Fabrication and Optical Properties of Highly Ordered ZnO
Nanodot Arrays." Chemical Physics Letters 411, 1-3, pp.37-42, 2005.
[9] Huang, M. H., et al. "Catalytic Growth of Zinc Oxide Nanowires by Vapor
Transport." Advanced Materials 13, 2, pp.113-6, 2001.
[10] Yu, H. D., et al. "A General Low-Temperature Route for Large-Scale Fabrication
of Highly Oriented ZnO Nanorod." Journal of the American Chemical Society
127, 8, pp.2378-9, 2005.
[11] Choy, J. H., et al. "Soft Solution Route to Directionally Grown ZnO Nanorod
Arrays on Si Wafer; Room-Temperature Ultraviolet Laser." Advanced Materials
15, 22, pp.1911,+, 2003.
[12] Park, W. I., et al. "Fabrication and Electrical Characteristics of
High-Performance ZnO Nanorod Field-Effect Transistors." Applied Physics
Letters 85, 21, pp.5052-4, 2004.
[13] Tak, Y., and K. J. Yong. "Controlled Growth of Well-Aligned ZnO Nanorod
Array using a Novel Solution Method." Journal of Physical Chemistry B 109, 41,
pp.19263-9, 2005.
[14] Wen, X. G., et al. "ZnO Nanobelt Arrays Grown Directly from and on Zinc
Substrates: Synthesis, Characterization, and Applications." Journal of Physical
Chemistry B 109, 32, pp.15303-8, 2005.
[15] Umar, A., and Y. B. Hahn. "ZnO Nanosheet Networks and Hexagonal Nanodiscs
Grown on Silicon Substrate: Growth Mechanism and Structural and Optical
Properties." Nanotechnology 17, 9, pp.2174-80, 2006.
[16] Huang, M. H., et al. "Room-Temperature Ultraviolet Nanowire Nanolasers."
Science 292, 5523, pp.1897-9, 2001.
[17] Li, S. Y., et al. "Gate-Controlled ZnO Nanowires for Field-Emission Device
Application." Journal of Vacuum Science & Technology B 24, 1, pp.147-51,
2006.
[18] Wang, X. D., C. J. Summers, and Z. L. Wang. "Large-Scale Hexagonal-Patterned
Growth of Aligned ZnO Nanorods for Nano-Optoelectronics and Nanosensor
Arrays." Nano Letters 4, 3, pp.423-6, 2004.
[19] Wan, Q., et al. "Room-Temperature Hydrogen Storage Characteristics of ZnO
Nanowires." Applied Physics Letters 84, 1, pp.124-6, 2004.
[20] Law, M., et al. "Nanowire Dye-Sensitized Solar Cells." Nature Materials 4, 6,
pp.455-9, 2005.
[21] Hu, H. M., et al. "ZnO Nanostructures with Different Morphologies and their
Field Emission Properties." Applied Surface Science 252, 24, pp.8410-3, 2006.
[22] Shen, X. P., et al. "Fabrication, Characterization and Field Emission Properties of
Large-Scale Uniform ZnO Nanotube Arrays." Nanotechnology 16, 10,
pp.2039-43, 2005.
[23] Xu, F., et al. "Synthesis and Field Emission of Four Kinds of ZnO
Nanostructures: Nanosleeve- Fishes, Radial Nanowire Arrays, Nanocombs and
Nanoflowers." Nanotechnology 17, 12, pp.2855-9, 2006.
[24] Ramgir, N. S., et al. "Ultralow Threshold Field Emission from a Single Multipod
Structure of ZnO." Applied Physics Letters 88, 4, pp.042107, 2006.
[25] Talin, A. A., K. A. Dean, and J. E. Jaskie. "Field Emission Displays: A Critical
Review." Solid-State Electronics 45, 6, pp.963-76, 2001.
[26] Spindt, C. A., et al. "Physical properties of thin-film field emission cathodes with
molybdenum cones." Journal of Applied Physics 47, 12, pp.5248-63, 1976.
[27] Komoda, T., et al. "Fabrication of ballistic electron surface-emitting display on
glass substrate. Society for Information Display, pp.188-191, 2001.
[28] Sagawa, M., et al. "Novel device structure of MIM cathode array for field
emission displays." Society for Information Display, pp. 193-195, 2001.
[29] Yamaguchi, E., et al. "A 10-in surface-conduction electron-emitter display."
Society for Information Display, pp.52-55, 1997.
[30] Choi, W. B., et al. "Fully Sealed, High-Brightness Carbon-Nanotube
Field-Emission Display." Applied Physics Letters 75, 20, pp.3129-31, 1999.
[31] Yang, P. D., et al. "Controlled Growth of ZnO Nanowires and their Optical
Properties." Advanced Functional Materials 12, 5, pp.323-31, 2002.
[32] Geng, C. Y., et al. "Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon
Substrates." Advanced Functional Materials 14, 6, pp.589-94, 2004.
[33] Lee, W., M. C. Jeong, and J. M. Myoung. "Catalyst-Free Growth of ZnO
Nanowires by Metal-Organic Chemical Vapour Deposition (MOCVD) and
Thermal Evaporation." Acta Materialia 52, 13, pp.3949-57, 2004.
[34] Lyu, S. C., et al. "Low-Temperature Growth of ZnO Nanowire Array by a
Simple Physical Vapor-Deposition Method." Chemistry of Materials 15, 17,
pp.3294-9, 2003.
[35] Liu, C. H., et al. "High-Density, Ordered Ultraviolet Light-Emitting ZnO
Nanowire Arrays." Advanced Materials 15, 10, pp.838,+, 2003.
[36] Li, Y., et al. "Ordered Semiconductor ZnO Nanowire Arrays and their
Photoluminescence Properties." Applied Physics Letters 76, 15, pp.2011-3, 2000.
[37] Lee, C. Y., et al. "ZnO Nanowires Hydrothermally Grown on PET Polymer
Substrates and their Characteristics." Journal of Nanoscience and
Nanotechnology 5, 7, pp.1088-94, 2005.
[38] Ashfold, M. N. R., et al. "The Kinetics of the Hydrothermal Growth of ZnO
Nanostructures." Thin Solid Films 515, 24, pp.8679-83, 2007.
[39] Xu, C. X., and X. W. Sun. "Strategies to Improve Field Emission Performance of
Nanostructural ZnO." Journal of Electronic Materials 36, 5, pp.543-8, 2007.
[40] Fowler, R. H. and Nordheim L. "Electron Emission in Intense Electric Fields."
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 119, 781, pp. 173-181, 1928.
[41] Ye, C. H., et al. "Enhanced Field Emission Performance of ZnO Nanorods by
Two Alternative Approaches." Journal of Physical Chemistry C 111, 34,
pp.12673-6, 2007.
[42] Lee, C. Y., et al. "Single-Crystalline MgxZn1-xO (0 <= x <= 0.25) Nanowires on
Glass Substrates obtained by a Hydrothermal Method: Growth, Structure and
Electrical Characteristics." Nanotechnology 16, 8, pp.1105-11, 2005.
[43] Zhao, Q., et al. "Morphological Effects on the Field Emission of ZnO Nanorod
Arrays." Applied Physics Letters 86, 20, pp.203115, 2005.
[44] Ye, Z. Z., et al. "ZnO Nanorods with Different Morphologies and their Field
Emission Properties." Solid State Communications 142, 8, pp.425-8, 2007.
[45] Sun, X. C., et al. "Shape Controllable Synthesis of ZnO Nanorod Arrays Via
Vapor Phase Growth." Solid State Communications 129, 12, pp.803-7, 2004.
[46] Wang, R. C., et al. "ZnO Nanopencils: Efficient Field Emitters." Applied Physics
Letters 87, 1, pp.013110, 2005.
[47] Wu, X. F., et al. "Controlled One-Step Fabrication of Highly Oriented ZnO
Nanoneedle." Chemical Communications, 15, pp.1655-7, 2006.
[48] H�刞mer, K. "Interband Magnetoreflection of ZnO." Physica status solidi B-basic
research, 56, 1, pp.249-60, 1973.
[49] Sze, S. M., Semiconductor Devices, Physics and Technology, 2nd edition, Wiley,
New York, 2002
[50] Vanheusden, K., et al. "Mechanisms Behind Green Photoluminescence in ZnO
Phosphor Powders." Journal of Applied Physics 79, 10, pp.7983-90, 1996.
[51] P�夗pl, A. and V�匜kel, G. "ESR and photo-ESR investigations of zinc vacanies
and interstitial oxygen ions undoped ZnO ceramics." Physica status solidi
A-applied research 125, 2, pp.571-81, 1991.
[52] Kim, C., et al. "Physical and Electronic Properties of ZnO : Al." Materials
Research Bulletin 41, 2, pp.253-9, 2006.
[53] Look, D. C. "Recent Advances in ZnO Materials and Devices." Materials
Science and Engineering B-Solid State Materials for Advanced Technology 80,
1-3, pp.383-7, 2001.
[54] Gao, T., and T. H. Wang. "Synthesis and Properties of Multipod-Shaped ZnO
Nanorods for Gas-Sensor Applications." Applied Physics A-Materials Science &
Processing 80, 7, pp.1451-4, 2005.
[55] Wu, X. L., et al. "Photoluminescence and Cathodoluminescence Studies of
Stoichiometric and Oxygen-Deficient ZnO Films." Applied Physics Letters 78,
16, pp.2285-7, 2001.
[56] Liu, X., et al. "Growth Mechanism and Properties of ZnO Nanorods Synthesized
by Plasma-Enhanced Chemical Vapor Deposition." Journal of Applied Physics
95, 6, pp.3141-7, 2004.
[57] Xu, L. F., et al. "Morphological Control of ZnO Nanostructures by
Electrodeposition." Journal of Physical Chemistry B 109, 28, pp.13519-22, 2005.
[58] Hou, X. M., et al. "A Facile Low-Cost Synthesis of ZnO Nanorods via a
Solid-State Reaction at Low Temperature." Materials Letters 60, 29-30,
pp.3786-88, 2006.
[59] Lepot, N., et al. "Synthesis of ZnO nanorods from aqueous solution." Materials
Letters 61, 13, pp.2624-27, 2007.
[60] Yu, Q. J., et al. "Fabrication and Optical Properties of Large-Scale ZnO
Nanotube Bundles via a Simple Solution Route." Journal of Physical Chemistry
C 111, 47, pp.17521-26, 2007.
[61] Li, F., et al. "Single-Crystal Hexagonal Disks and Rings of ZnO:
Low-Temperature, Large-Scale Synthesis and Growth Mechanism." Angewandte
Chemie-International Edition 43, 39, pp.5238-42, 2004.
[62] She, G. W., et al. "Controlled Synthesis of Oriented Single-Crystal ZnO
Nanotube Arrays on Transparent Conductive Substrates." Applied Physics
Letters 92, 5, pp.053111, 2008.
[63] She, G. W., et al. "Electrochemical/chemical Synthesis of Highly-Oriented
Single-Crystal ZnO Nanotube Arrays on Transparent Conductive Substrates."
Electrochemistry Communications 9, 12, pp.2784-88, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊