跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承鈺
研究生(外文):Chen-Yu Tsai
論文名稱:B型抗諧振反射光波導表面電漿子共振生化感測器之研製與其在即時免疫分析上之應用
論文名稱(外文):Fabrication of ARROW-B SPR Biosensors and Its Application to Real-Time Immunoassay
指導教授:黃遠東黃遠東引用關係
指導教授(外文):Yang-Tung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:B型抗諧振反射光波導表面電漿子共振即時免疫分析
外文關鍵詞:ARROW-BSurface Plasmon ResonanceReal-Time Immunoassay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究一種適用於水中環境的B型抗諧振反射光波導 (ARROW-B) 結構之表面電漿子共振(SPR)感測器。B型抗諧振反射光波導的入射導光區較大,能有效和單模光耦合,且可藉由調整結構來控制導光效率。使用模擬分析光場在元件中的傳播特性,有系統地設計感測元件,使其在水環境下具有最佳化的感測靈敏度。在感測區前後的光場傳播區設計具上下對稱的光波導隔離層,使元件能穩定導光而不受外界環境影響,並於感測區附加液體流道設計,幫助生物分子附著於感測區表面進行反應。此外進行即時免疫分析上的應用,感測器針對G型老鼠免疫球蛋白分子可達約10-10 g/ml 濃度之偵測極限,並於10-10 ~ 10-7 g/ml的濃度與訊號變化具有線性關係。利用原子力顯微鏡可直接觀察到生物分子確於金表面形成鍵結,最後完成抗體-抗原專一反應之檢測。
In this thesis, an ARROW-B SPR sensor used in aqueous environment has been investigated. ARROW-B waveguide with a thick guiding region provides efficient coupling with a single-mode fiber, and the propagation behavior can be modulated by adjusting the structure. Modal characteristics of ARROW-B are analyzed with simulation and designed for obtaining optimum sensitivity in aqueous environment. The waveguides in front and rear of the SPR sensing region have symmetric cladding structure to improve the immunity against environmental changes, and the sensing region is configured with a liquid flow channel which assists bioagents in attaching to the gold surface for reaction. Then we submit the sensors in application to real-time immunoassay, and attain 10-10 g/ml of concentration of mouse IgG in detection limit. The power differences have a approximately linear relation with the concentration of mouse IgG between 10-10 and 10-7 g/ml. Using the Atomic Force Microscopy, the biomolecules binding to the gold surface are visualized. Finally, the specific immunoassay of antibody-antigen conjugate is demonstrated.
1 Introduction 1
2 Surface Plasmon Resonance 4
2.1 Principles of SPR . . . 4
2.2 Derivation of SPR . . . 6
2.3 Measurement Methods of SPR Technology . . . 9
3 ARROW-B Waveguides 13
3.1 Two General Types: ARROW and ARROW-B . . . 14
3.2 Characteristics of an ARROW-B . . . 16
4 Methods for Analysis 18
4.1 Transfer Matrix Method . . . 18
4.2 Normalization of Guided Modes . . . 22
4.3 Eigenmode Expansion Analysis . . . 24
5 Design of Au-Coated ARROW-B SPR Sensors 27
5.1 ARROW-B Structure in Sensing Region . . . 27
5.2 ARROW-B Structure in Propagation Region . . . 28
5.3 Au-Coated SPR Sensors . . . 31
5.3.1 Buffer Layer . . . 31
5.3.2 Adjusting Layer . . . 32
5.3.3 Gold film . . . 33
6 Fabrication Process of SPR Sensors 36
6.1 Layout of SPR Sensor . . . 36
6.2 Fabrication Process . . . 38
6.3 Problems and Improvement . . . 44
7 Real-Time Immunoassay Detection 46
7.1 Optical Measurement Setup with Circulating-Flow System . . . 46
7.2 Reagents . . . 48
7.3 Feasibility Demonstration of Sensor Chips . . . 51
7.4 Measurements on Glucose Solution of Different Concentration . . . 53
7.5 Immunoassay Detection of Mouse IgG and Goat anti-mouse IgG . . . 53
7.6 AFM Analysis. . . 58
7.7 Specific Characterization . . . 59
8 Conclusion 62
Bibliography 63
[1] C. F. R. Mateus, M. C. Y. Huang, C. J. Chang-Hasnain, J. E. Foley, R. Beatty, P. Li, and B.T. Cunningham, “Ultra-sensitive immunoassay using VCSEL detection system,”Electronics Letters, vol. 40, no. 11, 2004.
[2] D. L. Venton and C. P. Woodbury, “Screening combinatorial libraries,”Chemometrics and Intelligent Laboratory Systems, vol. 48, pp. 131-150, 1999.
[3] M. A. Cooper, “Optical biosensors in drug discovery,”Nature Reviews - Drug Discovery, vol. 1, pp. 515-528, 2002.
[4] K. Nakatani, S. Sando, and I. Saito, “Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance,”Nature Biotechnology,
vol. 19, pp. 51-55, 2001.
[5] J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,”Current Opinion in Chemical Biology, vol. 5, pp. 572-577, 2001.
[6] O. Hugon, P. Benech, and H. Gagnaire, “Surface plasmon chemical/biological sensor in integrated optics,”Sensors and Actuators B, vol. 51, pp. 316-320, 1998.
[7] X. Liu, D. Q. Song, Q. L. Zhang, Y. Tian, and H. Q. Zhang, “Wavelength-modulation surface plasmon resonance sensor,”Trends in Analytical Chemistry, vol. 24, no. 10,
pp. 887-893, 2005.
[8] W. Lee, B. K. Oh,W. H. Lee, and J.W. Choi, “Immobilization of antibody fragment for immunosensor application based on surface plasmon resonance,” Colloids and Surfaces B, vol. 40, pp. 143-148, 2005.
[9] S. Toyama, A. Shoji, and Y. Yishida, “Surface design of SPR-based immunosensor for the e¤ective binding of antigen or antibody in the evanescent …eld using mixed polymer matrix,”Sensors and Actuators B, vol. 52, pp. 65-71, 1998.
[10] X. Liu, D. Q. Song, Q. L. Zhang, Y. Tian, and H. Q. Zhang, “An optical surface plasmon resonance biosensor for determination of tetanus toxin,”Talanta, vol. 62, pp. 773-779, 2004.
[11] E. Fujii, T. K. Nakamura, and S. Sasaki, “Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium and enzyme sensors,”Analytical Chemistry, vol. 74, pp. 6106-6110, 2002.
[12] B. Hock, M. Seifert, and K. Kramer, “Engineering receptors and antibodies for biosensors,”Biosensors and Bioelectronics, vol. 17, pp. 239-249, 2002.
[13] M. Wong, C. Fong, and M. Yang, "Biosensor measurement of the interaction kinetics between insulin-like growth factors and their binding proteins,” Biochimica et
Biophysica Acta, vol. 1432, pp. 293–301, 1999.
[14] C. Bertucci, S. Cimitan, and L. Menotti, “Optical biosensor analysis in studying herpes simplex virus glycoprotein D binding to target nectin1 receptor,”Journal of Pharmaceutical and Biomedical Analysis, vol. 32, pp. 697-706, 2003.
[15] M. Minunni, S. Tombelli, M. Mascini, and A. Bilia, “An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening,”Talanta, vol. 65, pp. 578-585, 2005.
[16] R. L. Rich, Y. S. N. Day, T. A. Morton, and D. G. Myszka, “High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE,”Analytical Biochemistry, vol. 296, pp. 197–207, 2001.
[17] X. Liu, J. Y. Wei, D. Q. Song, Z. W. Zhang, and H. Q. Zhang, “Determination of affinities and antigenic epitopes of bovine cardiac troponin I (cTnI) with monoclonal
antibodies by surface plasmon resonance biosensor,”Analytical Biochemistry, vol. 314, pp. 301-309, 2003.
[18] D. S. Hagg and R. P. Junghans, “Measurement and biological correlates of antibody bioactivity during antibody immunotherapies,”Journal of Immunological Methods,
vol. 219, pp. 7-21, 1998.
[19] M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting opticalvwaveguides in SiO2-Si multilayer structures,” Applied Physics Letters, vol. 49, no. 1, pp. 13-15, 1986.
[20] T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,”
IEEE Journal of Quantum Electronics, vol. 28, no. 7, pp. 1689-1700, July 1992.
[21] T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide (ARROW-B),” IEEE Photonics Technology Letters, vol. 1, no. 8, pp. 232-234, 1989.
[22] J. Homola and S. S. Yee, “Novel polarization control scheme for spectral surface plasmon resonance sensors,”Sensors and Actuators B, vol. 51, pp. 331-339, 1998.
[23] Y. Ly and H. Yamazaki, “Detection of human blood by cloth-based enzyme immunoassay of immunoglobulin G,”Biotechnology Techniques, vol. 9, no. 9, pp. 677-680, 1995.
[24] J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves waves guided by thin lossy metal films,”Physical Review B, vol. 33, no. 8, pp. 5186-5201,
1986.
[25] F. M. Mirabella and N. J. Harrick, “Internal Re‡ection Spectroscopy: Review and Supplement,”Harrick Scienti…c Corporation, vol. 3, pp. 84-95, 1985.
[26] C. W. Lin, “Design and development of bioplasmonics,”
http://www.ntist.edu.tw/sensor/
[27] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vol. 54, pp. 3-15, 1999.
[28] K. S. Johnston, S. R. Karlsen, C. C. Jung, and S. S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,”Materials Chemistry and Physics, vol 42, pp. 242-246, 1995.
[29] X. L. Yu et al., “A surface plasmon resonance imaging interferometry for protein micro-array detection,”Sensors and Actuators B, vol. 108, pp. 765-771, 2005.
[30] A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,”Sensors and Actuators B, vol. 97, pp. 114-–121, 2004.
[31] L. Pierantoni, A. Massaro, and T. Rozzi, “Accurate modeling of TE/TM propagation and losses of integrated optical polarizer,”IEEE Transactions on Microwwave
Theory and Techniques, vol. 53, no. 6, pp. 1856-1862, 2005.
[32] T. Baba and Y. Kokubun, “Scattering Loss of antiresonant reflecting optical waveguides,”Journal of Lightwave Technology, vol. 9, no. 5, pp. 590-597, 1991.
[33] T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide (ARROW -B),”IEEE Photonics Technology Letters, vol. 1, no. 8, pp. 232-234, 1989.
[34] J. Y. Lin and A. K. Chua, “High extinction ratio antiresonant reflecting optical waveguide-type polarizers with large core diameter,”Applied Physics Letters, vol.
86, id. 071114, 2005.
[35] H. de Bruijn, R. Kooyman, and J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: Some Considerations,”Applied Optics, vol. 31, no. 4, pp. 440-442, 1992.
[36] M. Mrksich, J. R. Grunwell, and G. M. Whitesides, “Biospeci…c absorption of carbonic anhydrase to self-assembled monolayers of alkanethiolates that present ben-
zenesulfonamide groups on gold,”Journal of the American Chemical Society, vol. 117, pp. 12009-12010, 1995.
[37] C. D. Bain, E. B. Troughton,Y. T. Tao, J. Evall, and G. M. Whitesides, “Formation of monolayer …lms by the spontaneous assembly of organic thiols from solution onto
gold,”Journal of the American Chemical Society, vol. 111, pp. 321-335, 1989.
[38] M. Iga, A. Sekib, K. Watanabea, “Gold thickness dependence of SPR-based hetero-core structured optical …ber sensor,”Sensors and Actuators B, vol. 106, pp. 363–368, 2005.
[39] G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and Actuators B,
vol. 74, pp. 145-151, 2001.
[40] J. Ctyroky, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,”Electronics Letters, vol. 33, no. 14,
pp. 1246-1248, 1997.
[41] K. Y. Tsai, “Design and fabrication of ARROW-B SPR biochemical sensors in aqueous environment,” Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2002.
[42] D. Sanchez, Progress & Developments OSA Optical Interference Coatings Conference, vol. 14, Issue 3, September, 2004.
[43] R. Thielsch, J. Heber, H. Uhlig, and N. Kaiser, “Mechanical stress influoride coatings,”Proceedings of SPIE, vol. 3738, pp. 136-147, 1999.
[44] A. Pandey and M. Mann, “Proteomics to study genes and genomes,”Nature, vol. 405, no. 15, pp. 837-846, 2000.
[45] K. Wadu-Mesthrige, N. A. Amro, G. Y. Liu, “Immobilization of proteins on self-assembled monolayers,”Scanning, vol. 22, pp. 380-388, 2000.
[46] B. L. Frey and R. M. Corn, “Covalent attachment and derivatization of poly (L-lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy,”Analytical Chemistry, vol. 68, pp. 3187-3193, 1996.
[47] S. Babacan, P. Pivarnik, S. Letcher and A.G. Rand, “Evaluation of antibody immobilization methods for piezoelectric biosensor application,”Biosensors and Bioelec-
tronics, vol. 15, pp. 615-621, 2000.
[48] F. K. Kasper, T. Kushibiki, Y. Kimura, G. Antonios, and Y. Tabata, “In vivo release of plasmid DNA from composites of oligo (poly (ethylene glycol) fumarate) and cationized gelatin microspheres,” Journal of Controlled Release, vol. 10, pp. 547-61, 2005.
[49] Anti-mouse IgG (fab specific), product no. A2179, SIGMA.
[50] L. C. Junqueira, J. Carneiro, Basic Histology, McGraw-Hill, 2003.
[51] Y. Shi, B. Reitmaier, J. Regenbogen, R. M. Slowey, S. R. Opalenik, E.Wolf, A. Goppelt, and J. M. Davidson, “CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue,” American Journal of Pathology, vol. 166, no. 1, pp. 303-312, 2005.
[52] Y. Zou, S. Evans, J. Chen, H. C. Kuo, R. P. Harvey, and K. R. Chien, “CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway,” Development, vol. 124, pp. 793-804, 1997.
[53] J. L. Kadrmas, and M. C. Beckerle, “The LIM domain: from the cytoskeleton to the nucleus,”Nature Reviews Molecular Cell Biology, vol. 5, pp. 920-931, 2004.
[54] M. J. McGrath, D. L. Cottle, M. A. Nguyen., J. M. Dyson, I. D. Coghill,P. A. Robinson, M. Holdsworth, B. S. Cowling, E. C. Hardeman, C. A. Mitchell, and S. Brown, “Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin …lament formation and sarcomere assembly,”Journal of Biological Chemistry, vol. 281, pp. 7666-7683, 2006.
[55] R. Seipp, “Mucosal immunity and vaccines,” http://www.scq.ubc.ca/mucosal-immunity-and-vaccines/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊