跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志洋
研究生(外文):Chih-Yang Lin
論文名稱:電阻式隨機存取記憶元件之製作、改良與特性研究
論文名稱(外文):Fabrication, Modification, and Characterization of Resistive Random Access Memory (RRAM) Devices
指導教授:曾俊元
指導教授(外文):Tseung-Yuen Tseng
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:265
中文關鍵詞:電阻式記憶體電阻轉態二氧化鋯
外文關鍵詞:RRAMResistive switchingZirconium oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:598
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著數位行動生活的到來,非揮發性記憶體在可攜式電子產品,如:手機、數位相機跟筆記型電腦扮演著重要的角色。快閃記憶體是現今非揮發性記憶體的主流,但是它有著許多缺點,包含:高的操作電壓、低的操作速度與較差的耐久力。近年來因傳統快閃式記憶體在不斷微縮下,面臨了許多急欲克服之難題,例如儲存在懸浮閘極中之電荷,因穿遂氧化層過薄而隨時間漸漸流失,造成資料流失;此外,在長時間操作之下,易在穿遂氧化層內產生缺陷以及超作電壓過高…等,如此瓶頸,加快了下世代非揮發性記憶體之研究腳步。下世代非揮發性記憶體有:鐵電記憶體、磁記憶體與電阻式記憶體等,其正如火如荼地發展。而其中電阻式記憶體是利用元件內部不同之電阻值當作其相對應之記憶狀態,並用電壓或電流脈衝在及短時間下(~10ns)改變電阻值,進而達到資料寫入之動作。
夏普公司於2002年國際電子元件會議中首先發表錳酸鐠鈣此材料於金屬-絕緣層-金屬結構中,其存在電阻轉換現象並可利用其元件內部電阻值之不同而應用於非揮發性記憶體,即所謂電阻式記憶體。電阻式記憶體具有著與互補式金氧半電晶體製程相容、結構簡單、可微縮化、操作速度快與低耗電等優點,可用於嵌入式記憶體並極可能成為下世代之非揮發性記憶體。韓國三星公司更於2004年國際電子元件會議中,發表利用二元過渡金屬氧化物搭配0.18μm製程,成功製作出電阻式記憶體;隔年,並發表利用栓塞式底電極以減少兩個記憶狀態之電阻值於連續操作過程中所發生之變異。現今,電阻轉態現象已於許多材料中被觀察到了,如有機高分子材料、固態電解質、鈣鈦礦材料像,鋯酸鍶、鈦酸鍶與錳酸鐠鈣;過渡金屬氧化物,像氧化鎳、氧化鈦、氧化鋯與氧化銅等。
本論文首先根據已發表之論文,把現今電阻式記憶體研究之重點、現況與理論做一整理、歸納與比較。而在將把電阻式記憶體於商業化應用之前,還是有著許多重要、尚未瞭解的問題,包含:電阻轉態機制的基本原理和可靠度之爭議。本論文以鋯酸鍶與一些二元氧化物為材料,針對這些議題提供一些較深入的看法並進一步地解決。在本論文前部分,為利用凝膠法製備鋯酸鍶;首先提出利用一層5nm之鉻金屬內嵌於鋯酸鍶薄膜內,搭配快速熱退火處理,解決其在連續的操作過程中出現不穩定的電阻轉換之問題。
相對於鈣鈦礦材料,二元金屬氧化物有著較少組成成分跟與傳統互補式金氧半電晶體製程相容之優勢。因此,後半部論文主要研究一些二元氧化物,如:氧化鋅、氧化鈰、氧化鉻、氧化鐵、氧化鑭、氧化鋯、氧化鋁;分析其電阻轉態特性,發現氧化鋯與氧化鋁具有優異的特性。利用鈦金屬強烈吸氧之特性,成功製作不需高電壓形成過程(forming process)之記憶元件;不需要額外的高電壓,進而減少在電路設計上的複雜度。針對氧化鋯作分析,利用界面層解釋以鈦金屬為上電極時,記憶元件有著極高的良率、穩定的特性、極性相關與自我限流的轉態行為跟載子傳輸機制的改變等。對這尚未明瞭的電阻轉態機制,提供不同的觀點。最後對全文作一總結,並對未來可行的研究工作做一建議。
With the arrival of Digital Age, nonvolatile memory (NVM) plays an important role for portable electronic products, such as the mobile phone, digital camera, and notebook computer. Flash memory is the mainstream among the nonvolatile memory devices nowadays, but it has many drawbacks, including high operation voltage, low operation speed, and poor endurance. In addition, when the device dimensions are continuously scaled down, the flash memory faces the challenge of thin tunneling oxide that causes an unsatisfactory retention time. Consequently, there are many proposals for new nonvolatile memories such as the ferroelectric random access memory (FeRAM), the magnetic random access memory (MRAM), and the resistive random access memory (RRAM). As for RRAM, the digital data can be stored in two memory states with high and low resistivities, ON-state and OFF-state, respectively. The two memory states can be easily switched by voltage biases or pulses, which enhance the possibility of the application in circuit level.
In the International Electron Devices Meeting (IEDM) in 2002, Sharp company reported that RRAM had advantages over both dynamic random access memory (DRAM) and flash memory due to its nonvolatility, simple device structure, and high operation speed. Thereafter, much attention devoted to the development of RRAM devices. Resistive switching phenomena have been observed in many materials, which can be roughly categorized into four groups (1) organic molecular materials, (2) solid state electrolytes (or called programmable metallization cell), (3) perovskite structures such as SrZrO3 (SZO), SrTiOx and Pr0.7Ca0.3MnO3, and (4) transition metal oxides (TMOs) such as NiO, TiO2, ZrO2, Cu2O, and etc.
There are still many important unresolved problems, including the original resistive switching mechanisms and the reliability issues (such as endurance test, reset failure, and variations of resistive switching parameters), which are all needed to be identified before realizing commercial applications. The major goals of the dissertation are to give more insights into these issues and find solutions to them.
The purpose of this research focuses on the fundamentals of the SZO- and ZrO2-based resistive switching memory devices. Based on the basic understandings, the SZO- and ZrO2-based memory device is modified to achieve the improvements in the device yield, reliability, and manufacturability for the next-generation nonvolatile memory application. We have proposed novel, simple, and effective manners by embedding a thin Cr layer and using Ti top electrode, which causes an inner space charge region and a self-aligned interface. No extra manufacture cost is needed to improve the device performance. Moreover, the self-aligned interface serves as a series resistance and an oxygen sink, which is demonstrated to be important for the enhancement of the device characteristics. In the final part of this dissertation, the conclusions and the suggested future works are presented.
Contents
Chinese Abstract i
English Abstract iii
Acknowledgment v
Contents vi
Table Captions xi
Figure Captions xii



Chapter 1 Review: Current status of resistive switching memories
1.1 Introduction 1
1.1.1 Volatile memory 1
1.1.2 Nonvolatile memory 2
1.1.3 Next-generation nonvolatile memory 3
1.2 Basic resistive switching current-voltage (I-V) curves 6
1.3 Resistive switching device structures 8
1.3.1 Top electrodes 8
1.3.2 Surface treatments 10
1.3.3 Buffer layers 11
1.3.4 Embedded metals 14
1.3.5 Resistive switching films 14
1.3.6 Bottom electrodes 16
1.4 Forming process 16
1.4.1 Formation of metal islands 17
1.4.2 Formation of oxygen vacancies 18
1.5 Carrier conduction mechanisms 20
1.6 Resistive switching mechanisms 22
1.6.1 Conducting filament 22
1.6.2 Oxygen migration 23
1.6.3 Cation migration 24
1.6.4 Charge transfer 24
1.6.5 Schottky barrier modulation 25
1.7 Current issues and scaling ability for resistive random access memory 26
1.7.1 Operation variation 26
1.7.2 Current reduction 26
1.7.3 Device yield
1.7.4 Scaling ability 27
27
1.8 Resistive switching phenomena in organic molecules 27
1.8.1 Formation of conducting filaments 28
1.8.2 Electroreduction and oxidation of the molecules 28
1.8.3 Interfacial effects dominating the conductance change 29
1.8.4 Charge trapping or inclusion doping induced resistive switching 29
1.9 RRAM structure and chip architecture 31
1.10 Conclusions 32
1.11 Dissertation Organization 32



Chapter 2 Experimental Details
2.1 Radio-Frequency Magnetron Sputtering System 55
2.2 Fabrication of Resistive Switching Memory Devices 56
2.2.1 Deposition of Bottom Electrode 57
2.2.2 Deposition of Perovskite Material Resistive Layer 58
2.2.3 Deposition of Binary Metal Oxide Resistive Layer 59
2.2.4 Deposition of Top Electrode 59
2.3 Material Analyses 60
2.3.1 X-ray Diffraction 60
2.3.2 Four-Point Probe 60
2.3.3 Auger Electron Spectrometer 61
2.3.4 Secondary Ion Mass Spectrometer 61
2.3.5 X-ray Photoelectron Spectroscopy 61
2.3.6 Atomic Force Microscopy 62
2.3.7 Scanning Electron Microscopy 62
2.3.8 Transmission Electron Microscopy 63
2.4 Electrical Analyses 63
2.4.1 Current-Voltage Measurement 64
2.4.2 Data Retention Time Measurement 64
2.4.3 Nondestructive Readout Measurement 64
2.4.4 Electrical Pulse Induced Resistance Change Measurement 65
2.4.5 Endurance Measurement 65




Chapter 3 Results and discussion of the resistive switching properties in the SZO-based memory devices
3.1 Introduction 76
3.2 Experimental details 76
3.3 Resistive switching properties of sol-gel derived Mo-doped SZO thin films 79
3.3.1 Bipolar resistive switching phenomenon 79
3.3.2 Mulit-bit storage application 81
3.4 Resistive switching properties of sol-gel derived pure SZO thin films 81
3.4.1 Resistive switching phenomenon 82
3.4.2 Rapid thermal annealing effect on pure SZO thin films 84
3.4.3 Memory effects of the pure SZO thin films at RTA 600 oC 85
3.4.4 Conduction mechanisms 85
3.5 Improvement of resistive switching characteristics in SZO thin films with embedded Cr layer 86
3.5.1 Thickness effects of the embedded Cr layer 87
3.5.2 Memory effects of SZO thin films with embedding 5-nm-thick Cr layer 87
3.5.3 Conduction mechanisms 89
3.6 Conclusion 90




Chapter 4 Results and discussion of the resistive switching properties in the CeO2, Cr2O3, Fe2O3, ZnO, and La2O3 thin films
4.1 Introduction 115
4.2 Experimental details 115
4.3 Resistive switching phenomenon in Cr2O3, Fe2O3, ZnO, La2O3 thin films 113
4.4 Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films 119
4.4.1 Nonpolar resistive switching properties 120
4.4.2 Stability investigation of memory states 122
4.5 Conclusion 123


Chapter 5 Results and discussion of the resistive switching properties in the Al2O3-based memory devices
5.1 Introduction 135
5.2 Experimental details 136
5.3 Bistable resistive switching in Al2O3 memory thin films 137
5.3.1 Bipolar resistive switching phenomenon in Ti/Al2O3/Pt devices 137
5.3.2 Conduction mechanisms in Ti/Al2O3/Pt devices 140
5.4 Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices 140
5.4.1 Bipolar resistive switching phenomenon in Pt/Ti/Al2O3/Pt devices 142
5.4.2 Thermal forming process in Pt/Ti/Al2O3/Pt devices 142
5.5 Conclusion 144




Chapter 6 Results and discussion of the resistive switching properties in the ZrO2-based memory devices
6.1 Introduction 156
6.2 Experimental details 157
6.3 Memory and top electrode effect of RF sputtered ZrO2 thin films 158
6.3.1 Resistive switching phenomenon in ZrO2-based devices 158
6.3.2 Bipolar resistive switching phenomenon in Ti/ZrO2/Pt devices 159
6.3.3 Memory effects of ZrO2-based devices 162
6.4 Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode 164
6.4.1 The influences of interface layer on the resistive switching behavior 165
6.4.2 The influences of interface layer on the resistive switching parameters 169
6.5 Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films 172
6.5.1 Conduction mechanisms in ZrO2-based devices 172
6.5.2 Proposed resistive switching mechanisms for ZrO2-based devices 175
6.5.3 Fatigue behaviors of ZrO2-based devices 178
6.6 Conclusion 179

Chapter 7 Conclusion
7.1 Conclusion 201
7.2 Suggestions and Future Work 206
7.2.1 Controlling interface layers 207
7.2.2 Controlling Oxygen Vacancies 207
7.2.3 Confining Conducting Filaments 208




Reference 213
[1] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig., 2002, pp. 193-196.
[2] K. Kim, J. H. Choi, and H.-S. Jeong, “The future prospect of nonvolatile memory,” in Proc. VLSI-TSA-Tech., 2005, pp. 88-94.
[3] T. Nakamura, Y. Fujimori, N. Izumi, and A. Kamisawa, “Fabrication technology of ferroelectric memories,” Jpn. J. Appl. Phys., vol. 37, no. 3B, pp. 1325-1327, 1998.
[4] R. Moazzami, “Ferroelectric thin film technology for semiconductor memory,” Semicond. Sci. Technol., vol. 10, pp. 375-390, 1995.
[5] T. Hayashi, Y. Igarashi, D. Inomata, T. Ichimori, T. Mitsuhashi, K. Ashikaga, T. Ito, M. Yoshimaru, M. Nagata, S. Mitarai, H. Godaiin, T. Nagahama, C. Isobe, H. Moriya, M. Shoji, Y. Ito, H. Kuroda, and M. Sasaki, “A novel stack capacitor cell for high density FeRAM compatible with CMOS logic,” in IEDM Tech. Dig., 2002, pp. 543-546.
[6] J. M. Slaughter, R. W. Dave, M. Durlam, G. Kerszykowski, K. Smith, K. Nagel, B. Feil, J. Calder, M. DeHerrera, B. Garni, and S. Tehrani, “High speed toggle MRAM with MgO-based tunnel junctions,” in IEDM Tech. Dig., 2005, pp. 873-876.
[7] R. Leuschner, U. K. Klostermann, H. Park, F. Dahmani, R. Dittrich, C. Grigis, K. Hernan, S. Mege, C. Park, M. C. Clech, G. Y. Lee, S. Bournat, L. Altimime, and G. Mueller, “Thermal select MRAM with a 2-bit cell capability for beyond 65 nm technology node,” in IEDM Tech. Dig., 2006.
[8] C. C. Hung, Y. S. Chen, D. Y. Wang, Y. J. Lee, W. C. Chen, Y. H. Wang, C. T. Yen, S. Y. Yang, K. H. Shen, C. P. Chang, C. S. Lin, K. L. Su, H. C. Cheng, Y. J. Wang, D. D.-L. Tang, M. J. Tsai, and M. J. Kao, “Adjacent-reference and self-reference sensing scheme with novel orthogonal wiggle MRAM cell,” in IEDM Tech. Dig., 2006.
[9] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys., vol. 69, no. 5, pp. 2849-2856, 1991.
[10] S. Lai and T. Lowrey, “OUM - a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” in IEDM Tech. Dig., 2001, pp. 803-806.
[11] G. Dearnaley, A. M. Stoneham, and D. V. Morgan, “Electrical phenomena in amorphous oxide films,” Rep. Prog. Phys., vol. 33, pp. 1129-1191, 1970.
[12] D. P. Oxley, “Electroforming, switching and memory effects in oxide thin films,” Electrocomponent Sci. Technol., vol. 3, pp. 217-224, 1977.
[13] H. Pagnia and N. Sotnik, “Bistable switching in electroformed metal-insulator-metal devices,” Phys. Stat. Sol. (a), vol. 108, pp. 11-65, 1988.
[14] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, pp. 833-840, 2007.
[15] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in IEDM Tech. Dig., 2004, pp. 587-590.
[16] S. Seo, M. J. Lee, D. H. Seo, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, pp. 5655-5667, 2004.
[17] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, and B. H. Park, “Conductivity switching characteristics and reset currents in NiO films,” Appl. Phys. Lett., vol. 86, p. 093509, 2005.
[18] S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H. Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park, “Electrode dependence of resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 87, p. 263507, 2005.
[19] M. G. Kim, S. M. Kim, E. J. Ghoi, S. E. Moon, J. Park, H. C. Kim, B. H. Park, M. J. Lee, S. Seo, D. H. Seo, S. E. Ahn, and I. K. Yoo, “Study of transport and dielectric of resistive memory states in NiO thin film,” J. Jpn. Appl. Phys., vol. 44, no. 42, pp. L1301-L1303, 2005.
[20] J. W. Park, J. W. Park, D. Y. Kim, and J. K. Lee, “Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory application,” J. Vac. Sci. Technol. A, vol. 23, no. 5, pp. 1309-1313, 2005.
[21] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, and B. I. Ryu, “Multi-layer cross- point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” in IEDM Tech. Dig., 2005, pp. 750-753.
[22] I. H. Inoue, M. J. Rozenberg, S. Yasuda, M. J. Sanchez, M. Yamazaki, T. Manago, H. Akinaga, H. Takagi, H. Akoh, and T. Tokura, “Strong electron correlation effects in non-volatile electronic memory devices,” in NVMTS, 2005, pp. 133-136
[23] D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee, B. H. Park, I. K. Yoo, I. B. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, “Electrical observation of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., vol. 88, p. 202102, 2006.
[24] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Sim, U-In Chung, J. T. Moon, and B. I. Ryu, “Improvement of resistive memory switching in NiO using IrO2,” Appl. Phys. Lett., vol. 88, p. 232106, 2006.
[25] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, "Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide," Appl. Phys. Lett., vol. 89, p. 103509, 2006.
[26] Y. H. You, B. S. So, J. H. Hwang, W. Cho, S. S. Lee, T. M. Chung, C. G. Kim, and K. S. An, “Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition,” Appl. Phys. Lett., vol. 89, p. 222105, 2006.
[27] D. S. Jeong, B. J. Choi, and C. S. Hwang, “Study of the negative resistance phenomenon in transition metal oxide films from a statistical mechanics point of view,” J. Appl. Phys., vol. 100, p. 113724, 2006.
[28] J. W. Park, J. W. Park, K. Jung, M. K. Yang, and J. K. Lee, “Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications,” J. Vac. Sci. Technol. B, vol. 24, no. 5, pp.2205-2208, 2006.
[29] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, “Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides,” J. Jpn. Appl. Phys., vol. 45, no. 37, pp. L991-L994, 2006.
[30] Y. Sato, K. Kinoshita, M. Aoki, and Y. Sugiyama, “Consideration of switching mechanism of binary metal oxide resistive junctions using thermal reaction model,” Appl. Phys. Lett., vol. 90, p. 033503, 2007.
[31] K. Jung, H. Seo, Y. Kim, H. Im, J. Hong, J. W. Park, and J. K. Lee, “Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films,” Appl. Phys. Lett., vol. 90, p. 052104, 2007.
[32] H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. H. Inoue, and H. Takagi, “Resistance switching in the metal deficient-type oxides: NiO and CoO,” Appl. Phys. Lett., vol. 91, p. 012901, 2007.
[33] R. Jung, M.-J. Lee, S. Seo, D. C. Kim, G.-S. Park, K. Kim, S. Ahn, Y. Park, I.-K. Yoo, J.-S. Kim, and B. H. Park, “Decrease in switching voltage fluctuation of Pt/NiOx/Pt structure by process control,” Appl. Phys. Lett., vol. 91, p. 022112, 2007.
[34] C. B. Lee, B. S. Kang, M. J. Lee, S. E. Ahn, G. Stefanovich, W. X. Xianyu, K. H. Kim, J. H. Hur, H. X. Yin, Y. Park, I. K. Yoo, J.-B. Park, B. H. Park, “Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films,” Appl. Phys. Lett., vol. 91, p. 082104, 2007.
[35] S. R. Lee, K. Char, D. C. Kim, R. Jung, S. Seo, X. S. Li, G. S. Park, and I. K. Yoo, “Resistive memory switching in epitaxially grown NiO,” Appl. Phys. Lett., vol. 91, p. 202115, 2007.
[36] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film,” Appl. Phys. Lett., vol. 91, p. 222103, 2007.
[37] M. J. Lee, S. Seo, D. C. Kim, S. E. Ahn, D. H. Seo, I. K. Yoo, I. G. Baek, D. S. Kim, I. S. Byun, S. H. Kim, I. R. Hwang, J. S. Kim, S. H. Jeon, and B. H. Park, “A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories,” Adv. Mat., vol. 19, no. 1, pp. 73-76, 2007.
[38] J. B. Yun, S. Kim, S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, Y. Park, J. Kim, and H. Shin, “Random and localized resistive switching observation in Pt/NiO/Pt,” Phys. stat. sol., vol. 1, no. 6, pp. 280-282, 2007.
[39] D. W. Kim, B. H. Park, R. Jung, and S. Seo, “Reversible resistance switching behaviors of Pt/NiO/Pt structures,” J. Jpn. Appl. Phys., vol. 46, no. 8A, pp. 5205-5207, 2007.
[40] K. C. Kim, M. Kim, Y. H. You, S. S. Lee, Y. K. Lee, T. M. Chung, C. G. Kim, J. H. Hwang, K. S. An, N. S. Lee, and Y. Kim, “NiO thin films by MOCVD of Ni(dmamb)2 and their resistance switching phenomena,” Surface & Coatings Technol., vol. 201, pp. 9252-9255, 2007.
[41] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V,” in IEDM Tech. Dig., 2007, pp. 767-770.
[42] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, and I. Y. Yoo, “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM application,” in IEDM Tech. Dig., 2007, pp. 771-774.
[43] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,” in IEDM Tech. Dig., 2007, pp. 775-778.
[44] M. J. Lee, Y. Park, S. E. Ahn, B. S. Kang, C. B. Lee, K. H. Kim, W. X. Xianyu, I. K. Yoo, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, K. N. Choi, and K. S. Chung, “Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory,” J. Appl. Phys., vol. 103, p. 013706, 2008.
[45] K. Jung, J. Choi, Y. Kim, H. Im, S. Seo, R. Jung, D. C. Kim, J. S. Kim, B. H. Park, and J. P. Hong, “Resistance switching characteristics in Li-doped NiO,” J. Appl. Phys., vol. 103, p. 034504, 2008.
[46] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 86, p. 262907, 2005.
[47] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, p. 033715, 2005.
[48] B. J. Choi, S. C. Kyung, K. M. Kim, Y. C. Shin, C. S. Hwang, S. Y. Hwang, S. Cho, S. Park, and S. K. Hong, “Study on the resistive switching time of TiO2 thin films,” Appl. Phys. Lett., vol. 89, p. 012906, 2006.
[49] D. S. Jeong, H. Schroeder, and R. Waser, “Impedance spectroscopy of TiO2 thin films showing resistive switching,” Appl. Phys. Lett., vol. 89, p. 082909, 2006
[50] K. M. Kim, B. J. Choi, D. S. Jeong, C. S. Hwang, and S. Han, “Influence of carrier injection on resistive switching of TiO2 thin films with Pt electrodes,” Appl. Phys. Lett., vol. 89, p. 162912, 2006.
[51] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Appl. Phys. Lett., vol. 89, p. 223509, 2006.
[52] M. Fujimoto, H. Koyama, Y. Hosoi, K. Ishihara, and S. Kobayashi, “High-speed resistive switching of TiO2/TiN nano-crystalline thin film,” J. Jpn. Appl. Phys., vol. 45, no. 11, pp. L310-L312, 2006.
[53] K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures,” Electrochem. Solid-State Lett., vol. 9, no. 12, pp. G343-G346, 2006.
[54] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Akoh, and Y. Tokura, “High speed unipolar switching resistance RAM (RRAM) technology,” in IEDM Tech. Dig., 2006, pp. 793-796.
[55] K. Kinoshita, T. Tamura, H. Aso, H. Noshiro, C. Yoshida, M. Aoki, Y. Sugiyama, and H. Tanaka, “New model proposed for switching mechanism of ReRAM,” in IEEE NVSMW, 2006, pp. 84-85.
[56] Y. Ogimoto, Y. Tamai, M. Kawasaki, and Y. Tokura, “Resistance switching memory device with a nanoscle confined current path,” Appl. Phys. Lett., vol. 90, p. 143515, 2007.
[57] K. M. Kim, B. J. Choi, and C. S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films,” Appl. Phys. Lett., vol. 90, p. 242906, 2007
[58] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 91, p. 012907, 2007
[59] J. R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K. Tsunoda, G. Ingmar Meijer, Y. Nishi, “Field-programmable rectification in rutile TiO2 crystals,” Appl. Phys. Lett., vol. 91, p. 112101, 2007.
[60] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,” Appl. Phys. Lett., vol. 91, p. 223510, 2007.
[61] T. Watanable S. Hoffmann-Eifert, L. Yang, A. Rudiger, C. Kugeler, C. S. Hwang, and R. Waser, “Liquid injection atomic layer deposition of TiOx films using Ti[OCH(CH3)2]4,” J. Electrochem. Soc., vol. 154, no. 6, pp. G134-G140, 2007.
[62] D. S. Jeong, H. Schroder, and R. Waser, “Coexistence of bipolar and unipolar resistive switching behavior in a Pt/TiO2/Pt stack,” Electrochem. Solid-State Lett., vol. 10, no. 8, pp. G51-G53, 2007.
[63] H. Schroeder, and D. S. Jeong, “Resistive switching in a Pt/TiO2/Pt thin film stack – a candidate for a non-volatile ReRAM,” Microelectromic Engineering, vol. 84, pp. 1982-1985, 2007.
[64] M. Villafuerte, G. Juarez, S. P. de Heluani, and D. Comedi, “Hysteretic current-voltage characteristics in RF-sputtered nanocrystalline TiO2 thin films,” Physica B, vol. 398, pp. 321-324, 2007.
[65] L. F. Liu, J. F. Kang, H. Tang, N. Xu, Y. Wang, X. Y. Liu, X. Zhang, and R. Q. Han, “Cd doping improved resistive switching characteristics of TiO2-based resistive memory devices,” in SSDM, 2007, pp. 836-837.
[66] L. F. Liu, H. Tang, Y. Wang, D. Y. Tian, X. Y. Liu, X. Zhang, R. Q. Han, and J. F. Kang, “Reversible resistive switching of Gd-doped TiO2 thin films for nonvolatile memory application,” in ICSICT, 2006, pp. 833-835.
[67] H. Shima, F. Takano, H. Muramatsu, H. Ahinaga, I. H. Inoue, and H. Takagi, “Control of resistance switching voltages in rectifying Pt/TiOx/Pt trilayer,” Appl. Phys. Lett., vol. 92, p. 043510, 2008.
[68] A. K. Jonsson, G. A. Niklasson, and M. Veszelei, “Electrical properties of ZrO2 thin films,” Thin Solid Films, vol. 402, pp. 242-247, 2002.
[69] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M.-J. Lee, S.-A. Seo, and I. K. Yoo, “Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory application,” IEEE Electron Deivce Lett., vol. 26, no. 9, pp. 719-721, 2005.
[70] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M.-J. Lee, D. H. Seo, D.-S. Suh, Y.-S. Joung, and I.-K. Yoo, “Giant and stable conductivity switching behaviors in ZrO2 films deposited by pulsed laser deposition,” Jpn, J. Appl. Phys., vol. 44, no. 11, pp. L345-L347, 2005.
[71] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 366-368, 2007.
[72] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. Y. Tseng, and C. Hu, “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” J. Appl. Phys., vol. 102, p. 094101, 2007.
[73] C. Y. Lin, C. Y. Wu, C. Y. C. C. Lin, and T. Y. Tseng, “Memory effect of RF sputtered ZrO2 thin films,” Thin Solid Films, vol. 516, pp. 444-448, 2007.
[74] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, “Reproducible unipolar resitance switching in stoichiometric ZrO2 films,” Appl. Phys. Lett., vol. 90, p. 183507, 2007.
[75] W. Guan, S. Long, R. Jia, and M. Liu, “Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide,” Appl. Phys. Lett., vol. 91, p. 062111, 2007.
[76] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, “Resistive switching memory effect of ZrO2 films with Zr+ implanted,” Appl. Phys. Lett., vol. 92, p. 012117, 2008.
[77] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, “Non-volatile resistive switching for advanced memory application,” in IEDM Tech. Dig., 2005, pp. 765-768.
[78] T.-N. Fang, S. Kaza, S. Haddad, A. Chen, Y.-C. Wu, Z. Lan, S. Avanzino, D. Liao, C. Gopalan, S. Choi, S. Mahdavi, M. Buynoski, Y. Lin, C. Marrian, C. Bill, M. VanBuskirk, and M. Taguchi, “Erase mechanism for copper oxide resistive switching memory cells with nickel electrode,” in IEDM Tech. Dig., 2006, pp. 789-802.
[79] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and H. Hwang, “Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures,” Appl. Phys. Lett. , vol. 90, p. 042107, 2007.
[80] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, “Switching characterisitics of Cu2O metal-insulator-metal resistive memory,” Appl. Phys. Lett. , vol. 91, p. 123517, 2007.
[81] W. Y. Yang, and S. W. Bhee, “Effect of electrode material on the resistive switching of Cu2O film,” Appl. Phys. Lett. , vol. 91, p. 232907, 2007.
[82] A. Chen, S. Haddad, and Y. C. Wu, “A temperature-accelerated method to evaluate data retention of resistive switching nonvolatile memory,” IEEE Electron Device Lett., vol. 29, no. 1, pp. 38-40, 2008.
[83] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, and Z. Lan, “Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory,” Appl. Phys. Lett. , vol. 92, p. 013503, 2008.
[84] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Forming process investigation of CuxO memory films,” IEEE Electron Device Lett., vol. 29, no. 1, pp. 47-49, 2008.
[85] H. Sim, D. Choi, D. Lee, S. Seo, M. J. Lee, I. K. Yoo, and H. Hwang, “Resistance-switching characteristics of polycrystalline Nb2O5 for nonvolatile memory application,” IEEE Electron Device Lett., vol. 26, pp. 292-294, May 2005.
[86] H. Sim, D. Choi, D. Lee, M. Hasan, C. B. Samantaray, and H. Hwang, “Reproducible resistance switching characteristics of pulsed laser-deposited polycrystalline Nb2O5,” Microelectronic Engineering, vol. 80, pp.260-263, 2005.
[87] O. Kurnosikov, F. C. de Nooij, P. LeClair, J. T. Kohlhepp, B. Koopmans, H. J. M. Swagten, and W. J. M. de Jonge, “STM-induced reversible switching of local conductivity in thin Al2O3 films,” Phys. Rev. B, vol. 64, p. 153407, 2001.
[88] C. Y. Lin, C. Y. Wu, C. Y. Wu, C. Hu, and T. Y. Tseng, “Bistable resistive switching in Al2O3 memory thin films,” J. Electrochem. Soc., vol. 154, no. 9, G189-G192, 2007.
[89] J. Ventura, Z. Zhang, Y. Liu, J. B. Sousa, and P. P. Freitas, “Electrical current induced pinhole formation and insulator-metal transition in tunnel junctions,” J. Phys.:Condens. Matter., vol. 19, p. 176207, 2007.
[90] T. W. Hickmott, “Formation of Ohmic contact: A breakdown mechanism in metal-insulator-metal structures,” J. Appl. Phys., vol. 100, p. 083712, 2006.
[91] D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. EI Khakani, “Gran size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films,” Appl. Phys. Lett. , vol. 87, p. 051910, 2005.
[92] H. Zhan, V. Astley, M. Hvasta, J. A. Deibel, D. M. Mittleman, and Y. S. Lim, “The metal-insulator transition in VO2 studied using terahertz apertureless near-field microscopy,” Appl. Phys. Lett. , vol. 91, p. 162110, 2007.
[93] J. S. Lee, M. Ortolani, U. Schade, Y. J. Chang, and T. W. Noh, “Microspectroscopic detection of local conducting areas generated by electric-pulsed-induced phase transition in VO2 films,” Appl. Phys. Lett. , vol. 91, p. 133509, 2007.
[94] K. Okimura, Y. Sasakawa, and Y. Nihei, “X-ray diffraction study of electric field-induce metal-insulator transition of vanadium dioxide film on sapphire substrate,” J. Jpn, Appl. Phys., vol. 45, no. 12, pp. 9200-9202, 2006.
[95] K. Okimura and J. Sakai, “Time-dependent characteristics of electric field-induced metal-insulator transition of planer VO2/c-Al2O3 structure,” J. Jpn, Appl. Phys., vol. 46, no. 34, pp. L813-L816, 2007.
[96] D. Ruzmetov, K. T. Zawilski, V. Narayanamurti, and S.Ramanathan, “Structure-functional property relationships in rf-sputtered vanadium dioxide thin films,” J. Appl. Phys., vol. 102, p. 113715, 2007.
[97] R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. , vol. 92, p. 021904, 2008.
[98] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwich,” cond-mat/072564v1.
[99] A. Odagawa, Y. Katoh, Y. Kanzawa, Z. Wei, T. Mikawa, S. Muraoka, and T. Takagi, “Eletroforming and resistance-switching mechanism in a magnetite thin film,” Appl. Phys. Lett. , vol. 91, p. 133503, 2007.
[100] S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fulii, K. Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Kawai, K. Shimakawa, A. Odagawa, and T. Takagi, “Fast switching and long retention Fe-O ReRAM and its switching mechanism,” in IEDM Tech. Dig., 2007, pp. 779-782.
[101] H. Shima, F. Takano, Y. Tamai, H. Akinaga, and I. H. Inoue, “Synthesis and characterization of Pt/Co-O/Pt trilayer exhibiting large reproducible resistance switching,” J. Jpn. Appl. Phys., vol. 46, no. 3, pp. L57-L60, 2007.
[102] H. Akinaga, H. Shima, F. Takano, I. H. Inoue, and H. Takagi, “Resistive switching effect in metal/insulator/metal heterostructures and its application for non-volatile memory,” IEEJ Trans., vol. 2, pp. 453-457, 2007.
[103] M. Villafuerte, S. P. Heluani, G. Juarez, G. Simonelli, G. Braunstein, and S. Duhalde, “Electric-pulse-induced reversible resistance in doped zinc oxide thin films,” Appl. Phys. Lett. , vol. 90, p. 052105, 2007.
[104] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett. , vol. 92, p. 022110, 2008.
[105] H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, “Low-power switching of nonvolatile resistive memory using hafnium oxide,” J. Jpn. Appl. Phys., vol. 46, no. 4B, pp. 2175-2179, 2007.
[106] J. Lee, I. S. Park, J. Park, K. J. Jung, S. Lee, and J. Ahn, “Resistance switching of HfO2 film and its application to non-volatile memory,” in SSDM, 2007, pp. 476-477.
[107] S. Lee, W. G. Kim, S. W. Rhee, and K. Yong, “Resistance switching behaviors of hafnium oxide films grown by MOCVD for nonvolatile memory applications,” J. Electrochem. Soc., vol. 155, no. 2, H92-H96, 2008.
[108] D. Lee, D. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. Seo, S. Heo, M. Jo, D. K. Hwang, H. K. Park, M. Chang, and M. Hasan, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” in IEDM Tech. Dig., 2006, pp. 797-800.
[109] D. Lee, D. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, “Resistance switching of copper doped MoOx films for nonvolatile memory applications,” Appl. Phys. Lett. , vol. 90, p. 122104, 2007.
[110] R. E. Thurstans and D. P. Oxley, “The electroformed metal-insulator-metal structure: a comprehensive model,” J. Phys. D, vol. 35, pp. 802-809, 2002.
[111] R. Ford, S. I. Khartsev, and A. M. Grishin, “Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition,” Phys. Rev. B, vol. 71, p. 045305, 2005.
[112] C. H. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A highly reliable self-aligned graded oxide WOx resistance memory: Conduction mechanism and reliability,” Sym. on VLSI Technol., 2007, pp. 228-229.
[113] R. D. Gould and M. G. Lopez, “Electrical conductivity and dynamics of electroforming in Al-SiOx-Al thin film sandwich structures,” Thin Solid Films, vol. 433, pp. 315-320, 2003.
[114] R. G. Sharpe and R. E. Palmer, “Concerted regeneration of electroformed metal-insulator-metal devices,” J. Appl. Phys., vol. 79, no. 11, pp. 8565-8570, 1996.
[115] A. B. Pakhomov, S. K. Wong, S. T. Hung, S. G. Yang, and C. Y. Wong, “Memory effects in a submicrometer metal-dielectric composite system,” J. Phys.: Condens. Matter., vol. 14, pp.5355-5366, 2002.
[116] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, p. 139-141, 2000.
[117] C. Rossel, G. I. Meijer, D. Bremaud, and D. Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching,” J. Appl. Phys., vol. 90, no. 6, p. 2892-2898, 2001.
[118] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng, “Bistable resistive switching of a sputtered-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 351-353, 2005.
[119] C. Y. Liu, A. Wang, W. Y. Jang, and T. Y. Tseng, “Electrical properties of resistance switching V-doped SrZrO3 films on textured LaNiO3 bottom electrodes,” J. Phys. D, vol. 39, no. 6, pp. 1156-1160, 2006.
[120] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng, “Resistive switching mechanisms of V-doped SrZrO3 memory films,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 725-727, 2006.
[121] C. Y. Liu, C. C. Chuang, J. S. Chen, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng, “Memory effect of sol-gel derived V-doped SrZrO3 thin films,” Thin Solid Films, vol. 494, pp. 287-290, 2006.
[122] J. W. Park, K. Jung, M. K. Yang, J. K. Lee, D. Y. Kim, and J. W. Park, “Resistance switching characteristics and ser-voltage dependence of low-resistance state in sputter-deposited SrZrO3:Cr memory films,” J. Appl. Phys., vol. 99, p. 124102, 2006.
[123] J. W. Park, J. W. Park, M. K. Yang, K. Jung, D. Y. Kim, and J. K. Lee, “Low-voltage resistive switching of polycrystalline SrZrO3:Cr thin films grown on Si substrates by off-axis rf sputtering,” J. Vac. Sci. Technol. A, vol. 24, no. 4, pp. 970-973, 2006.
[124] H. S. Lee, J. Bain, S. Choi, and P. A. Salvador, “Electrode influence on the transport through SrRuO3/Cr-doped SrZrO3/metal junctions,” Appl. Phys. Lett., vol. 90, p. 202107, 2007.
[125] C. Y. Liu, and T. Y. Tseng, “Resistance switching properties of sol-gel derived SrZrO3 based memory thin films,” J. Phys. D, vol. 40, no. 7, pp. 2157-2161, 2007.
[126] C. C. Lin, C. C. Lin, B. C. Tu, J. S. Yu, C. H. Lin, and T. Y. Tseng. “Resistive switching properties of SrZrO3-based memory films,” J. Jpn. Appl. Phys., vol. 46, no. 4B, pp. 2153-2156, 2007.
[127] C. C. Lin, J. S. Yu, C. Y. Lin, C. H. Lin, and T. Y. Tseng, “Stable resistive switching behavior of sputter deposited V-doped SrZrO3 thin films,” Thin Solid Films, vol. 516, pp. 402-46, 2007.
[128] C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng, “Resistive switching properties of sol-gel derived Mo-doped SrZrO3 thin films,” Surface & Coatings Technol., vol. 202, pp. 1391-1322, 2007.
[129] C. C. Lin, C. Y. Lin, M. H. Lin, C. H. Lin, and T. Y. Tseng, “Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films,” IEEE Trans. Electron Device, vol. 54, no. 12, pp. 3146-3151, 2007.
[130] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S J. Wind, “Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals,” Appl. Phys. Lett., vol. 78, vol. 23, p. 3738-3740, 2001.
[131] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, “Localized metallic conductivity and self-healing during thermal reduction of SrTiO3,” Phys. Rew. Lett., vol. 88, no. 7, p. 075508, 2002.
[132] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3,” Appl. Phys. Lett., vol. 86, p. 012107, 2005.
[133] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. H. Lee, W. Kim, Y. Park, I. K. Yoo, and H. Hwang, “Excellent resistive switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application,” in IEDM Tech. Dig., 2005, pp. 777-780.
[134] D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile,” Appl. Phys. Lett., vol. 88, p. 082904, 2005.
[135] S. H. Jeon, B. H. Park, J. Lee, B. Lee, and S. Han, “First-principles modeling of resistance switching in perovskite oxide material,” Appl. Phys. Lett., vol. 89, p. 042904, 2006.
[136] K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nature, vol. 5, pp. 312-320, 2006.
[137] A. Kingon, “Is the ultimate memory in sight,” Nature, vol. 5, 251-252, 2006.
[138] K. Szot, R. Dittmann, W. Speier, and R. Waser, “Nanoscale resistive switching in SrTiO3 thin films,” Phys. Stat. Sol., vol. 1, no. 2, pp. R86-R88, 2007.
[139] S. F. Alvarado, F. L. Mattina, J. G. Bendorz, “Electroluminescence in SrTiO3:Cr single-crystal nonvolatile memory cell,” Appl. Phys. A, vol. 89, pp. 85-89, 2007.
[140] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mat., vol. 19, pp.2232-2235, 2007.
[141] W. Xiang, R. Dong, D. Lee, S. Oh, D. Seong, and H. Hwang, “Heteroepitaxial growth of Nb-doped SrTiO3 films on Si substrates by pulsed laser deposition for resistance memory application,” Appl. Phys. Lett., vol. 90, p. 052110, 2007.
[142] Y. Hikita, Y. Kozuka, T. Susaki, H. Takagi, and H. Y. Hwang, “Characterization of the Schottky barrier in SrRuO3/Nb:SrTiO3 junctions,” Appl. Phys. Lett., vol. 90, p. 143507, 2007.
[143] M. C. Ni, S. M. Guo, H. F. Tian, T. G. Zhao, and J. Q. Li, “Resistive switching effect in SrTiO3-/Nb-doped SrTiO3 heterojunction,” Appl. Phys. Lett., vol. 91, p. 183502, 2007.
[144] K. Shibuya, T. Ohnishi, T. Sato, and M. Lippmaa, “Metal-insulator transition in SrTiO3 induced by field effect,” J. Appl. Phys., vol. 102, p. 083713, 2007.
[145] D. J. Seong, M. Jo, D. Lee, and H. Hwang, “HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 schottky junction for nonvolatile memory application,” Electrochem. Solid-State Lett., vol. 10, no. 6, pp. H168-H170, 2007.
[146] M. Fiebig, K. Miyano, Y. Tomioka, and Y. Tokura, “Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3,” Science, vol. 280, no. 19, pp. 1925-1928, 1998.
[147] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, “Current switching of resistive states in magnetoresistive manganites,” Nature, vol. 388, pp.50-52, 1997.
[148] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett., vol. 76, no. 19, pp. 2749-2751, 2000.
[149] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig., 2002, pp. 193-196.
[150] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3,” Appl. Phys. Lett., vol. 83, no. 5, pp. 957-959, 20034.
[151] S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Cun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, “Field-induced resistive switching in metal-oxide interfaces,” Appl. Phys. Lett., vol. 85, no. 2, pp. 317-319, 2004.
[152] K. Aoyama, K. Waku, A. Asanuma, Y. Uesu, and T. Katsufuji, “Electric-pulse-induced reflectance change in the thin film of perovskite manganite,” Appl. Phys. Lett., vol. 85, no. 7, pp. 1208-1210, 2004.
[153] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 85, no. 18, pp. 4073-4075, 2004.
[154] A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura, “Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature,” Phys. Rev. B, vol. 70, p. 224403, 2004.
[155] C. Papagianni, Y. B. Nian, Y. Q. Wang, N. J. Wu, and A. Ignatiev, “Impedance study of reproducible switching memory effect,” in IEEE NVMTS, 2004, pp. 125-128.
[156] X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, “Direct resistance profile for an electrical pulse induced resistance change device,” Appl. Phys. Lett., vol. 87, p. 233506, 2005.
[157] J. Sakai and S. Imai, “Room-temperature resistance switching and temperature hysteresis of Pr0.7Ca0.3MnO3 junctions,” J. Appl. Phys., vol. 97, p. 10H709, 2005.
[158] T. Oka, and N. Nagaosa, “Interface of correlated electron system: Proposed mechanism for colossal electroresistance,” Phys. Rev. Lett., vol. 95, p. 266403, 2005.
[159] A. Odagawa, T. Kanno, H. Adachi, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura, “Temperature dependence of colossal electro-resistance of Pr0.7Ca0.3MnO3 thin films,” Thin Solid Films, vol. 486, pp.75-78, 2005.
[160] C. J. Kim, B. I. Kim, and I. W. Chen, “Dependence of electrode on switching effect of Pr1-xCaxMnO3 thin film,” J. Jpn, Appl. Phys., vol. 44, no. 3, pp. 1260-1261, 2005.
[161] C. J. Kim, and I. W. Chen, “Resistance switching of Al/(Pr,Ca)MnO3 thin films,” J. Jpn, Appl. Phys., vol. 44, no. 17, pp. L525-L527, 2005.
[162] S. T. Hsu, W. W. Zhang, T. K. Li, W. Pan, A. Ignatiev, C. Papagianni, and N. J. Wu, “RRAM switching mechanism,” in IEEE NVMTS, 2005, pp. 121-124.
[163] X. Chen, N. Wu, and A. Ignatiev, “Perovskie RRAM devices with metal/insulator/PCMO/metal heterostructures,” in IEEE NVMTS, 2005, pp. 125-128.
[164] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Interface transport properties and resistance switching in perovskite-oxide heterojunctions,” in Proc. SPIE, 2005, p. 59322C.
[165] S. Tsui, Y. Q. Wang, Y. Y. Xue, and C. W. Chu, “Mechanism and scalability in resistive switching of metal-Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 89, p. 123502, 2006.
[166] M. Fujimoto, H. Koyama, S. Kobayashi, Y. Tamai, N. Awaya, Y. Nishi, and T. Suzuki, “Resistivity and resistive switching properties of Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 89, p. 243504, 2006.
[167] A. Odagawa, T. Kanno, and H. Adachi, “Transient response during resistance switching in Ag/Pr0.7Ca0.3MnO3/Pt thin films,” J. Appl. Phys., vol. 99, p. 016101, 2006.
[168] W. C. Peng, J. G. Lin, and J. H. Wu, “Enhanced colossal electroresistance in Cu/Pr0.7Ca0.3MnO3/Cu structure,” J. Appl. Phys., vol. 100, p. 093704, 2006.
[169] D. S. Kim, C. E. Lee, Y. H. Kim, and Y. T. Kim, “Effect of oxygen annealing on Pr0.7Ca0.3MnO3 thin film for colossal electroresistance at room temperature,” J. Appl. Phys., vol. 100, p. 093901, 2006.
[170] D. S. Kim, C. E. Lee, Y. H. Kim, and Y. T. Kim, “Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: Evidence for Mott transition,” Phys. Rev. B, vol. 74, pp. 174430, 2006.
[171] D. S. Kim, C. E. Lee, Y. H. Kim, and Y. T. Kim, “Resistive switching characteristics of Pr0.7Ca0.3MnO3 thin films grown on glass substrates by pulsed laser deposition,” Thin Solid Films, vol. 515, pp. 2573-2576, 2006.
[172] X. Chen, N. Wu, A. Ignatiev, Q. Chen, and Y. Zhang, “Buffer-enchanced electrical-pulse-induced resistive memory effect in thin film perovskites,” J. Jpn. Appl. Phys., vol. 45, no. 3A, pp. 1602-1606, 2006.
[173] C. J. Kim and I. W. Chen, “Effect of top electrode on resistance switching of (Pr,Ca)MnO3 thin films,” Thin Solid Films, vol. 515, pp. 2726-2729, 2006.
[174] A. Ignatiev, N. J. Wu, X. Chen, S. Q. Liu, C. Papagianni, and J. Strozier, “Resistance switching in perovskite thin films,” Phys. Stat. Sol. (b), vol. 243, no. 9, pp. 2089-2097, 2006.
[175] A. Ignatiev, N. J. Wu, S. Q. Liu, X. Chen, Y. B. Nian, C. Papagianni, J. Strozier, and Z. W. Xing, “Resistance switching memory effect in transition metal oxide thin films,” in IEEE NVMTS, 2006, pp. 100-103.
[176] Z. W. Xing, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced resistive switching effect enhance by a ferroelectric buffer on the Pr0.7Ca0.3MnO3 thin film,” Appl. Phys. Lett., vol. 91, p. 052106, 2007.
[177] S. Kar and A. K. Raychaudhuri, “Localized reversible nanoscale phase separation in Pr0.63Ca0.37MnO3 single crystal using a scanning tunneling microscope tip,” Appl. Phys. Lett., vol. 91, p. 143124, 2007.
[178] M. Fujimoto, H. Koyama, Y. Nishi, and T. Suzuki, “Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with point-contacted Ag electrodes,” Appl. Phys. Lett., vol. 91, p. 223504, 2007.
[179] S. T. Hsu, T. Li, and N. Awaya, “Resistance random access memory switching mechanism,” J. Appl. Phys., vol. 101, p. 024517, 2007.
[180] H. Yamamoto, T. Murakami, J. Sakai, and S. Imai, “Crystallinity effects on the electric-field-induced insulator-metal transition of Pr0.5Ca0.5MnO3films,” J. Appl. Phys., vol. 101, p. 103715, 2007.
[181] M. Quintero, P. Levy, A. G. Leyva, and M. J. Rozenberg, “Mechanism of electric-pulse-induced resistance switching in manganites,” Phys. Rev. Lett., vol. 98, p. 116601, 2007.
[182] Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, “Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides,” Phys. Rev. Lett., vol. 98, p. 146403, 2007.
[183] K. Tsubouchi, I. Ohkubo, H. Kumigashira, M. Oshima, Y. Matsumoto, K. Itaka, T. Ohnishi, M. Lippmaa, and H. Koinuma, “High-throughput characterization of metal electrode performance for electric-field-induced resistance switching in metal/Pr0.7Ca0.3MnO3/metal structures,” Adv. Mater., vol. 19, pp. 1711-1713, 2007.
[184] Q. Wang, D. S. Shang, Z. H. Wu, L. D. Chen, and X. M. Li, “Positive and negative electric-pulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films,” Appl. Phys. A, vol. 86, pp. 357-360, 2007.
[185] X. Chen, J. Strozier, N. J. Wu, A. Ignatiev, and Y. B. Nian, “A study of the symmetry properties and multi-state nature of perovskite oxide-based electrical pulse induced resistance-change devices,” N. J. Phys., vol. 8, p. 229, 2006.
[186] T. Nakamura, K. Homma, R. Tai, A. Nishio, and K. Tachibana, “Electric-pulse-induced resistance switching in magnetoresistance manganite films grown by metalorganic chemical vapor deposition,” IEEE Trans on Magnetics, vol. 43, no. 6, pp. 3070-3072, 2007.
[187] Y. Yuzhelevski, V. Markovich, V. Dikovsky, E. Rozenberg, and G. Gorodetsky, “current-induced metastable resistive states with memory in low-doped manganites,” Phys. Rev. B, vol. 64, p. 224428, 2001.
[188] P. Levy, M. Quintero, L. Granja, J. Curiale, J. Sacanell, G. Leyva, G. Polla, R. S. Freias, and L. Ghivelder, “Nonvolatile magnetoresistive memory I phase separated La0.325Pr0.300Ca0.375MnO3,” Phys. Rev. B, vol. 65, p.140401, 2002.
[189] V. G. Prokhorov, G. G. Kaminsky, V. A. Komashko, Y. P. Lee, A. I. Tovstolytkin, and A. N. Pogorily, “Giant resistance switching effect in nano-scale twinned La0.65Ca0.35MnO3 film,” Low Temp. Phys., vol. 28, no. 11, pp. 856-858, 2002.
[190] L. Sudheendra, and C. N. Rao, “Electriccurrent-induced first-order effects on the insulator-metal transition and the colossal electroresistance in rare-earth magnates ,” J. Appl. Phys., vol. 94, no. 4, pp. 2767-2769, 2003.
[191] V. G. Prokhorov, G. G. Kaminsky, V. A. Komashko, Y. P. Lee, and I. I. Kravchenko, “Observation of resistance switching between insulating and metallic states in nano-crystalline La0.65Ca0.35MnO3 film,” Physica B, vol. 334, pp. 403-407, 2003.
[192] A. Masuno, T. Terashima, Y. Shimakawa, and M. Takano, “Current-induced electroresistive effect in mixed-phase La0.65Ca0.35MnO3 thin films,” Appl. Phys. Lett., vol. 85, no. 25, pp. 6194-6196, 2004.
[193] J. S. Park, H. K. Lee, H. R. Bae, Y. P. Lee, and V. G. Prokhorov, “Giant resistance switching against thermal cycling in twinned La0.65Ca0.35MnO3 films,” J. Appl. Phys., vol. 95, no. 11, pp. 7100-7102, 2004.
[194] S. Duhalde, M. Villafuerte, G. Juarez, and S. P. Heluani, “Electric field-driven resistive switching in magnetoresistive La0. 5Ca0.5MnO3 thin films,” Physica B, vol. 354, pp. 11-15, 2004.
[195] J. Gao, and F. X. Hu, “Current-induced metastable resistive state in epitaxial thin films of La1-xCaxMnO3 (x=0.2, 0.3),” Appl. Phys. Lett., vol. 86, p. 092504, 2005.
[196] Y. G. Zhao, Y. H. Wang, G. M. Zhang, B. Zhang, X. P. Zhang, C. X. Yang, P. L. Lang, M. H. Zhu, and P. C. Guan, “Universal behavior of gaint electroresistance in epitaxial La0. 67Ca0.33MnO3 thin films,” Appl. Phys. Lett., vol. 86, p. 122502, 2005.
[197] F. X. Hu, and J. Gao, “Current-induced asymmetric transport in La0. 8Ca0.2MnO3 epitaxial thin films,” Appl. Phys. Lett., vol. 87, p. 152504, 2005.
[198] F. X. Hu, J. Gao, and X. S. Wu, “ Controllable colossal electroresistance in La0. 8Ca0.2MnO3 epitaxial thin films,” Phys. Rev. B, vol. 72, p. 064428, 2005.
[199] R. Dong, Q. Wang, L. Chen, T. Chen, and X. Li, “Fatigue behavior of the electric pulse induced reversible resistance change effect in Ag-La0.7Ca0.3MnO3-Pt sandwich,” Appl. Phys. A, vol. 80, pp. 13-16, 2005.
[200] T. Chen, X. Li, R. Dong, Q. Wang, and L. chen, “Field-induced resistance-switching of La0.7Ca0.3MnO3-δ films epitaxially grown on Ir/MgO buffered Si (001) substrates,” Thin Solid Films, vol. 488, pp. 98-102, 2005.
[201] D. S. Shang, L. D. Chen, Q. Wang, W. Q. Zhang, Z. H. Wu, and X. M. Li, “Temperature dependence of current-voltage characteristics of Ag-La0.7Ca0.3MnO3-Pt heterostructures,” Appl. Phys. Lett., vol. 89, p. 172102, 2006.
[202] D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang, “Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag-La0.7Ca0.3MnO3-Pt heterostructures,” Phys. Rev. B, vol. 73, p. 245427, 2006.
[203] Y. S. Xiao, X. P. Zhang, and Y. G. Zhao, “Negative differential resistance in La0. 67Ca0.33MnO3-δ/Nb-SrTiO3 p-n junction,” Appl. Phys. Lett., vol. 90, p. 013509, 2007.
[204] Y. H. Sun, Y. G. Zhao, and C. M. Xiong, ”Current-induced asymmetric I-V behavior of La0.82Ca0.18MnO3thin films and its tenability,” Appl. Phys. Lett., vol. 90, p. 122117, 2007.
[205] R. Dong, W. F. Xiang, D. S. Lee, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, M. Chang, M. Jo, M. Hasan, and Hyunsang Hwang, ”Improvement of reproducible hystersis and resistive switching in metal-La0.7Ca0.3MnO3-metal heterostructures by oxygen annealing,” Appl. Phys. Lett., vol. 90, p. 182118, 2007.
[206] X. Yuan, Z. Yan, Y. Xu, G. Gua, K. Jin, and C. Chen, “Switching behavior of oxygen-deficient La0.6Ca0.4MnO3-δ thin films,” Appl. Phys. Lett., vol. 90, p. 224105, 2007.
[207] L. Huang, B. Qu, L. Liu, and L. Zhang, “Study on the resistive switching properties of epitaxial La0. 67Ca0.33MnO3 films,” Sol. Stat. Comm., vol. 143, pp. 382-385, 2007.
[208] Y. Xie, J. Sun, D. Wang, S. Liang, and B. Shen, “Reversible electroresistance at the Ag/La0. 67Ca0.33MnO3 Interface,” J. Appl. Phys., vol. 100, 033704, 2006.
[209] Y. Tokunaga, Y. Kaneko, J. P. He, T. Arima, A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, ”Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interface,” Appl. Phys. Lett., vol. 88, p. 223507, 2006.
[210] X. Chen, N. Wu, J. Strozier, and A. Ignatiev, “Spatially extended nature of resistive switching in perovskite oxide thin films,” Appl. Phys. Lett., vol. 89, p. 063507, 2006.
[211] N. Biskup, A. Andres, N. Nemes, M. Hernandez, K. Glazyrin, Y. Mukovskii, “Colossal electroresistance without colossal magnetoresistance in La0.9Sr0.1MnO3,” Appl. Phys. Lett., vol. 90, p. 222502, 2007.
[212] S. Balevicius, N. Zurauskiene, V. Stankevic, P. Cimmperman, S. Kersulis, A. Cesnys, S. Tolvaisiene, L. Altgilbers, “Fast reversible thermoelectrical switching in mangaite thin films,” Appl. Phys. Lett., vol. 90, p. 212503, 2007.
[213] N. Tulina, S. Zverkov, A. Arsenov, Y. M. Mukovskii, D. Shulyatev, “Reproducible switching in normal metal-manganite single crystal point contacts with memory effect,” Physica C, vol. 385, pp. 563-567, 2003.
[214] N. Tulina, V. V. Sirotkin, “Electron instability in doped-manganites-based hererojunctions,” Physica C, vol. 400, pp. 105-110, 2004.
[215] A. Plecenik, K. Frohlich, J. Espinos, J. Holgado, A. Halabica, M. Pripko, A. Gilabert, “Degradation of LaMnO3-y surface layer in LaMnO3-y/metal interface,” Appl. Phys. Lett., vol. 81, pp. 859-861, 2002.
[216] A. Schmehl, F. Lichtenberg, H. Bielefeldt, J. Mannhart, and D. Schlom, “Transport properties of LaTiO3+x films and heterostructures,” Appl. Phys. Lett., vol. 82, pp. 3077-3079, 2003.
[217] Y. Jin, H. Shinojima and M. Shimada, ”Low current reversible resistive switching in Bismuth Titanate deposited by electron cyclotron resonance sputtering,” in SSDM, 2006, pp.566-567.
[218] Y. Jin, H. Sahai, and M. Shimada, “Reversible resistive switching in Bi4Ti3O12 thin films deposited by electron cyclotron resonance sputtering,” J. Jpn. Appl. Phys., vol. 45, no. 4B, pp. 3243-3246, 2006.
[219] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Colossal electro-resistance memory effect at metal/La2CuO4 interfaces,” J. Jpn. Appl. Phys., vol. 44, no. 40, pp. L1241-L1243, 2003.
[220] G. Liu, K. Jin, J. Qiu, M. He, H. Lu, J. Xing, Y. Zhou, and G. Yang, “Resistance switching in BaTiO3-δ/Si p-n heterostructure,” Appl. Phys. Lett., vol. 91, p. 252110, 2007.
[221] R. Oligschlaeger, R. Waser, R. Meyer, S. Karthauser, and R. Dittmann, “Resistive switching and data reliability of epitaxial (Br,Sr)TiO3 thin films,” Appl. Phys. Lett., vol. 88, p. 042901, 2006.
[222] Y. Xia, W. He, L. Chen, X. Meng, and Z. Liu, “Field-induced resistive switching based on space-charge-limit current,” Appl. Phys. Lett., vol. 90, p. 022907, 2007.
[223] Y. Xia, Z. Liu, Y. Wang, L. Shi, L. Chen, J. Yin, and X. Meng, “Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy,” Appl. Phys. Lett., vol. 91, p. 102904, 2007.
[224] M. Hamaguchi, K. Aoyama, A. Asanuma, Y. Uesu, and T. Katsufuji, “Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films,” Appl. Phys. Lett., vol. 88, p. 142508, 2006.
[225] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Interface resistance switching at a few nanometer thick perovskite manganite active layers,” Appl. Phys. Lett., vol. 88, p. 232112, 2006.
[226] A. Yamamoto, A. Sawa, H. Akoh, M. Kawasaki, and Y. Tokura, “Electrical properties of oxide heteroepitaxail p-n junctions: La1-xSrxFeO3/SrTi0.99Nb0.01O3,” Appl. Phys. Lett., vol. 90, 112104, 2007.
[227] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystrals,” IEEE Electronic Lett., vol. 2004, vol. 40, no. 13, pp.1-2.
[228] H. Akazawa, “Observation of both potential barrier-type and filament-type resistance switching with sputtered LiNbO3 thin films,” J. Jpn. Appl. Phys., vol. 46, no. 35, pp. L848-L850, 2007.
[229] D. Hsu, J. G. Lin, W. F. Wu, C. T. Wu, and C. H. Chen, “Voltage-current hysteretic characteristics in ME/Nd0.7Ca0.3MnO3 tihn films with ME = Au, Pt, Ag, Cu,” IEEE Tran. on Magnetics, vol. 43, no. 6, pp. 3067-3069, 2007.
[230] N. A. Tulina and L. A. Klinkova, “Reversal of the resistive switching effect in electron-doped Ba0.6K0.4BiO3-x,” Superconductivity, vol. 105, no. 1, pp. 238-240, 2007.
[231] P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, “Ferroelectric schottky diode,” Phys. Rev. Lett., vol. 73, no. 5, pp. 2107-2110, 1994.
[232] Y. Watanabe, “Reproducible memory effect in the leakage current of epitaxial ferroelectric/conductive perovskite heterostrutures,” Appl. Phys. Lett., vol. 66, no. 1, pp. 28-30, 1995.
[233] J. R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev, “Resistive switching in metal-ferroelectric-metal junctions,” Appl. Phys. Lett., vol. 83, no. 22, pp. 4595-4597, 2003.
[234] R. Meyer and R. Waser, “Hysteretic resistance concepts in ferroelectric thin films,” J. Appl. Phys., vol. 100, p. 051611, 2006.
[235] H. Kohlstedt, A. Petraru, K. Szot, A. Rudiger, P. Meuffels, H. Haselier, R. Waser, and V. Nagarajan, “Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors,” Appl. Phys. Lett., vol. 92, p. 062907, 20087.
[236] R. Y. Gu, Z. D. Wang, and C. S. Ting, “Theory of electric-field-induced metal-insulator transition in doped manganites,” Phys. Rev. B, vol. 67, p. 153101, 2003.
[237] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “Nonvolatile memory with multilevel switching: A basic model,” Phys. Rev. Lett., vol. 92, no. 17, p. 178302, 2004.
[238] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “A model for non-volatile electronic memory devices with strongly correlated materials,” Thin Solid Films, vol. 486, pp. 24-27, 2005.
[239] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “Strong electron correlation effects in nonvolatile electronic memory devices,” Appl. Phys. Lett., vol. 88, p. 033510, 2006.
[240] M. Quintero, A. G. Leyva, and P. Levy, “Simulateous electric and magnetic field induced nonvolatile memory,” Appl. Phys. Lett., vol. 86, p. 242102, 2005.
[241] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, “Nanometer-scale switches using copper sulfide,” Appl. Phys. Lett., vol. 82, no. 18, pp. 3032-3034, 2003.
[242] P. V. D. Sluis, “Non-volatile memory cells based on ZnxCd1-xS ferroelectric Schottky diodes,” Appl. Phys. Lett., vol. 82, no. 23, pp. 4089-4091, 2003.
[243] G. Q. Xie, L. Nittler, C. Obermair, and T. Schimmel, “Gate-controlled atomic quantum switch,” Phys. Rev. Lett., vol. 93, no. 12, p. 128303, 2004.
[244] N. G. Subramaiam, J. C. Lee, and T. W. Kang, “Current-controlled resistance modulation in ferroelectric Cd1-xZnxS thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 87, p. 212907, 2005.
[245] V. Pokalyakin S. Tereshin, A. Varfolomeev, D. Zaretsky, A. Baranov, A. Banerjee, Y. Wang, S. Ramanathan, and S. Bandyopadhyay, “Proposed model for bistability in nanowire nonvolatile memory,” J. Appl. Phys., vol. 97, p. 124306, 2005.
[246] S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, “A nonvolatile programmable solid-electrolyte nanometer switch,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 168-176, 2005.
[247] M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, and M. Mitkova, “Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes,” in Proc. NVMTS, 2004.
[248] M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, “Nonvolatile memory based on solid electrolytes,” in Proc. NVMTS, 2005.
[249] M. N. Kozicki, M. Park, and M. Mitkova, “Nanoscale memory elements based on solid-state electrolyes,” IEEE Trans. Nanotechnol., vol. 4, no. 3, pp. 331-338, 2005.
[250] N. E. Gilbert, C. Gopalan, and M. N. Kozicki, “A macro model of programmable metallization cell devices,” Solid State Electrton., vol. 49, no. 11, pp. 1813-1819, 2005.
[251] M. Kund, G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, “Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm,” in IEDM Tech. Dig., 2005, pp.787-800.
[252] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch,” Nature, vol. 433, pp. 47-50, 2005.
[253] T. Ramura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosaka, and M. Aono, “Switching property of atomic switch controlled by solid electrochemical reaction,” J. Jpn. Appl. Phys., vol. 45, no. 12, pp. L364-366, 2006.
[254] N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, and M. Aono, “Effect of ion diffusion on switching voltage voltage of solid-electroyte nanometer switch,” J. Jpn. Appl. Phys., vol. 45, no. 4B, pp. 3666-3668, 2006.
[255] M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, “A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte,” IEEE Trans. Nanotechnol., vol. 5, no. 5, pp. 535-544, 2006.
[256] K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, “Bipolar resistive switching in polycrystalline TiO2 films,” Appl. Phys. Lett., vol. 90, p. 113501, 2007.
[257] J. C. Lee, N. G. Subramaniam, J. W. Lee, and T. W. Kang, “Study of ferroelectric and reproducible bistable switching properties in CdMnS thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 90, p. 262909, 2007.
[258] T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, “Electrical transport in Ta2O5 resistive switch,” Appl. Phys. Lett., vol. 91, p. 092110, 2007.
[259] X. Guo, C. Schindler, S. Menzel, and R. Waser, “Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems,” Appl. Phys. Lett., vol. 91, p. 133513, 2007.
[260] Y. S. Park, S. Y. Lee, S. M. Yoon, S. W. Jung, B. G. Yu, S. J. Lee, and S. G. Yoon, “Nonvolatile programmable metallization cell memory switching element based on Ag-doped SbTe solid electrolyte,” Appl. Phys. Lett., vol. 91, p. 162107, 2007.
[261] Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi, “Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices,” IEEE Electron Device Lett., vol. 28, no. 1, pp. 14-16, 2007.
[262] C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, “Bipolar and unipolar resistive switching in Cu-doped SiO2,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2762-2768, 2007.
[263] X. F. Liang, Y. Chen, L. Shi, J. Yin, and Z. G. Liu, “Resistive switching and memory effects of AgI thin film,” J. Phys. D, vol. 40, pp. 4767-4770, 2007.
[264] T. Sakamoto, N. Banno, N. Iguchi, H. Kawauram, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono, “A Ta2O5 solid-electroyte switch with improved relability,” Sym. VLSI Tech. Dig., 2007, pp. 38-39.
[265] K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. yamada, and H. Narisawa, “A novel resistance memory with high scalability and nanosecond switching,” in IEDM Tech. Dig., 2007, pp. 783-786.
[266] Y. Segui, Bui Ai, and H. Carchano. Appl. Phys. Lett., vol. 47, pp. 140-142, 1976.
[267] D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery and G. Hass, Appl. Phys. Lett., vol. 85, no. 16, pp. 5763-5765, 2004.
[268] H. Pagnia, N. Sotnic, Phys. Stat. Sol. (a), vol. 108, no. 11, pp. 11-65, 1988.
[269] A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett., vol. 84, pp. 999-1001, 2004.
[270] Masahito Kushida, Hisao Inomata, Yuichiro Tanaka, Kieko Harada, Kyoichi Saito, and Kazuyuki Sugita, Jpn. J. Appl. Phys., vol. 41, pp.L281-L283, 2002.
[271] D. R. Stewart, D. A. A. Ohlberg, P. A. beck, Y. Chen, and R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, Nano. Lett., vol. 4, no.1 pp. 133-136, 2004.
[272] D. M. Taylor, and C. A. Mills, J. Appl. Phys., vol. 90, pp. 306-308, 2001.
[273] L. P. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, Appl. Phys. Lett., vol. 82, pp. 1419-1421, 2003.
[274] S. H. Kang, T. Crisp, L. Kymissis, and V. Bulovic, Appl. Phys. Lett., vol. 85, pp. 4666-4668, 2004.
[275] Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J.J. Stapleton, D. W. Price Jr., A. M. Rawlett, D. A. Allara, J. M. Tour, P. S. Weiss, Science, vol. 292, pp. 2303-2306, 2001.
[276] G. K. Ramachandran, T. J. Hopson, A. M. Rawlett, L. A. Nagahara, A. Primak, S. M. Lindsay, Science, vol. 300, pp. 1413-1418, 2003.
[277] M. D. Ventra, S.-G. Kim, S. T. Pantelides, N. D. Lang, Phys. Rev. Lett., vol. 86, pp. 672-675, 2001.
[278] L. P. Ma, Q. Xu, and Y. Yang, Appl. Phys. Lett., vol. 84, pp. 4908-4910, 2004.
[279] T. Tsujioka and H. Kondo, Appl. Phys. Lett., vol. 83, pp. 937-939, 2003.
[280] H. J. Gao, K. Sohlberg, Z. Q. Xu, H. Y. Chen, S. M. Hou, L. P. Ma, X. W. Fang, S. J. Pang, and S. J. Pennycook, Phys. Rev. Lett., vol. 84, pp. 1780-1783, 2000.
[281] Ju. H. Krieger, S. V. Trubin, S. B. Vaschenko, and N. F. Yudanov. Syn. Met., vol. 112, pp. 199-203, 2001.
[282] R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, and C. Dehm, IEEE Tech. Dig. Int. Electron Devices Meet. 2003, p. 797-800, 2003.
[283] T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, “Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition,” Appl. Phys. Lett., vol. 83, no. 6, pp. 1252-1254, 2003.
[284] D. Tondelier, K. Lmimouni, D. Vuillaumea, C. Fery, and G. Haas, “Metal/organic/metal bistable memory devices,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5763-5765, 2004.
[285] J. He, L. Ma, J. Wu, and Y. Yang, “Three-terminal organic memory devices,” J. Appl. Phys., vol. 97, pp. 064507, 2005.
[286] Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J. S. Chen, “Bistable resistance switching of poly (N-vinylcarbazole) films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 87, pp. 122101, 2005.
[287] Z. Liu, F. Xue, Y. Su, and K. Varahramyan, “Electrically bistable memory device based on spin-coated molecular complex thin film,” IEEE Electron Device Lett., vol. 27, no. 3, pp. 151-153, Mar. 2006.
[288] Y. Song, Q. D. Ling, C. Zhu, E. T. Kang, D. S. H. Chan, Y. H. Wang, and D.-L. Kwong, “Memory performance of a thin-film device based on a conjugated copolymer containing fluorene and chelated europium complex,” IEEE Electron Device Lett., vol. 27, no. 3, pp. 154-156, Mar. 2006.
[289] C.-H. Tu, Y.-S. Lai, and D.-L. Kwong, “Memory effect in the current-voltage
characteristic of 8-hydroquinoline aluminum salt films,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 354-356, May 2006.
[290] Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J. S. Chen, “Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 451-453, Jun. 2006.
[291] C.-H. Tu, Y.-S. Lai, and D.-L. Kwong, “Electrical switching and transport in the Si/organic monolayer/Au and Si/organic bilayer/Al devices,” Appl. Phys. Lett., vol. 89, pp. 062105, 2006.
[292] D. T. Simon, M. S. Griffo, R. A. DiPietro, S. A. Swanson, and S. A. Cartera,
“Admittance spectroscopy of polymer-nanoparticle nonvolatile memory devices,” Appl. Phys. Lett., vol. 89, pp. 133510, 2006.
[293] B.-O. Cho, T. Yasue, H. Yoon, M.-S. Lee, I.-S. Yeo, U-I. Chung, J.-T. Moon, and B.-I. Ryu, “Thermally robust multi-layer non-volatile polymer resistive memory,” in IEDM Tech. Dig., 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊