跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李顯億
研究生(外文):Shean-Yih Lee
論文名稱:鈦酸鍶鋇薄膜之應用性質研究
論文名稱(外文):Study on Applications of Barium Strontium Titanate Thin Films
指導教授:邱碧秀
指導教授(外文):Bi-Shiou Chiou
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:125
中文關鍵詞:鈦酸鍶鋇薄膜動態記憶體奈米種子層
外文關鍵詞:Barium Strontium Titanate Thin Filmsdynamic random access memoryseeding layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文我們提供幾種有效改善鈣鈦礦結構之鈦酸鍶鋇與鈣銅鈦氧化物薄膜之電性、熱穩定性及殘留應力的方法,由於單電晶體單電容之動態記憶體(lT1C; DRAM)的研究上,由原本的多晶矽/絕緣層/多晶矽 (SIS)結構演進到金屬/絕緣層/多晶矽 (MIS)結構和金屬/絕緣層/金屬 (MIM)結構,絕緣層具有作為與半導體間的緩衝層及降低元件操作電壓的功能外,必須同時具備低漏電流的特性以增加元件的記憶時問。所以,絕緣層必須具有高介電常數、低漏電流特性與高熱穩定性。在本研究中藉由種子層的加入,可有效改善鈦酸鍶鋇與鈣銅鈦氧化物薄膜之表面粗糙度、介電損失、漏電流密度、及薄膜熱穩定性。此外,藉由不同濃度的掺雜,亦可有效抑制鈦酸鍶鋇之晶粒成長,藉以改善薄膜之介電特性。
本文首先探討不同奈米種子層的鉻厚度對鈦酸鍶鋇薄膜特性之影響。研究中發現,加入鉻的種子層對鈦酸鍶鋇薄膜的特性有顯著的改善,其中包括:改善介電損失、降低漏電流密度、提高薄膜楊氏係數、減少薄膜殘留應力及結構熱穩定度的增加等。其中,鉻的種子層為2奈米厚度時,介電損失改善59%、薄膜楊氏係數提高41 %、薄膜殘留應力減少28 %及元件熱穩定度增加35 %等。
此外,我們也探討不同鋁含量的掺雜鈦酸鍶鋇鎂薄膜特性之影響。研究中發現,由於鋁離子取代鈦離子時,鋁離子所代表的行為是受體(Acceptor),一方面可防止鈦離子在製程過程中由四價還原成三價鈦離子,另一方面可吸收及中和在不同鈦離子之間的跳躍電子,因而可大幅減少薄膜漏電流及介電損失。此外,由容限因子(tolerance factor; t)公式來估算,不同鋁含量的掺雜可達到抑制/控制晶粒成長之目的,因而使鈦酸鍶鋇鎂薄膜的結構更穩定。
由於鈣銅鈦氧化物具有極大之介電常數,因而被視為下世代動態隨機讀取記憶體熱門材料之一。因此,探討加入鈣鈦礦結構之鈦酸鍶鋇薄膜作為鈣銅鈦氧化物(CaCu3Ti4O12; CCTO)之奈米種子層特性的影響。研究中發現,加入鈦酸鍶鋇奈米種子層,可有效提高鈣銅鈦氧化物之熱穩定係數及鈣銅鈦氧化物的絕緣特性。
最後為本文之總結,並在各章節中加入本論文研究成果與相關文獻中之研究結果作一比較。
In this thesis, we provide some effective methods to improve the electrical properties, thermal stability, and residual stress of barium strontium titanate oxide and calcium copper titanium oxide thin films. The electrical devices of one transistor and one capacitor dynamic random access memory (1T1C, DRAM) technologies were from polysilicon/insulator/ polysilicon (SIS) structures to metal/insulator/metal (MIM) structures. The insulator served as a buffer layer needs a high dielectric constant to reduce the operation voltage and low leakage current in order to increase the retention time of devices. Therefore, the requirements of the insulator must possess high-k dielectric constant, low leakage current and high thermal stability. In the thesis, the improvements of surface roughness, dielectric loss, leakage current density, and thin films thermal stability of barium strontium titanate oxide and calcium copper titanium oxide thin films by adding a seeding layer. In the thesis, we discovered that a Cr seeding layer can increase Young’s modulus and reduce MIM structure residual stress for BST thin films. Besides, it can suppress the grain growth and improve the dielectric properties of thin films by the different doped concentration.
In the beginning, we discuss the effects of the different thickness of the Cr seeding layer to barium strontium titanate films. It is obviously improvable the characteristics of BST films including decreasing the dielectric loss, leakage current, increasing Young’s modulus, and reducing residual stress by added the Cr seeding layer. The dielectric loss, thermal stability (TCC), Young’s modulus, and residual stress of BST films with a 2 nm Cr seeding layer are improved by about 59%, 35 %, 41 %, and 28 %, respectively, compared with BST films without a Cr seeding layer.
Besides, the Ba0.5Sr0.5Ti0.95Mg0.05O3 (BSTM) films properties are studied as a function of Al content and have remarkable improvements including dielectric loss, leakage current, and Figure of merit (FOM) as well as films grain sizes. It was observed that Al3+ ions occupy the B sites of Ti4+ in the ABO3 perovskite structure and behave as electron acceptor-like dopants. These acceptors prevent the reduction of Ti4+ to Ti3+ by neutralizing the donor action of the oxygen vacancies. The tolerance factor (t) of Al-doped BSTM perovskite thin films is 0.97 as compared to 0.87 of the undoped BSTM thin films. The increasing of tolerance factor value indicates that the specimens with Al doped BSTM films are more stable than undoped specimens.
CaCu3Ti4O12 (CCTO) is regarded the promising material in next generation dynamic random access memories (DRAMs) as a result of the colossal dielectric constant. In the research, a BST seeding layer to the interface between CCTO/Pt structures has remarkable influences on CCTO thin film properties including dielectric properties, insulating characteristics, and the thermal stability (TCC).
The experimental results were summarized in the final chapter. Comparisons other researchers' results with this thesis studies were discussed in each chapter.
Abstract (in Chinese)-------------------------------------------------------------------------------i
Abstract (in English)-------------------------------------------------------------------------------iii
Acknowledgements ---------------------------------------------------------------------------------v
Contents------------------------------------------------------------------------------------------------vi
List of Tables------------------------------------------------------------------------------------------xii
Figures caption -------------------------------------------------------------------------------------xiii

Chapter 1 Introduction ----------------------------------------------------------------------1
1.1 Background -------------------------------------------------------------------------------------1
1.2 Motive and goal of this research-----------------------------------------------------------------9
1.3 Method of attack----------------------------------------------------------------------------------11
1.4 Outline of the thesis------------------------------------------------------------------------------12

Chapter 2 Literatures review-------------------------------------------------------14
2.1 Overviews of BST thin films---------------------------------------------------------------------14
2.1.1 Characteristics of BST thin films-----------------------------------------------------------14
2.1.2 Influence of seeding layers on BST thin films--------------------------------------------18
2.1.3 Influence of dopants on BST thin films---------------------------------------------------22
2.1.4 Influence of grain size and surface roughness in BST thin films---------------------28
2.1.5 Influence of residual stress on BST thin films------------------------------------------33
2.1.6 Influence of N2O plasma treatment on BST thin films--------------------------------34
2.2 Overviews of CaCu3Ti4O12 (CCTO)-----------------------------------------------------------39
2.2.1 Characteristics of CCTO thin films-------------------------------------------------------39
2.2.2 Grain boundaries induced barrier height model-----------------------------------------41
2.2.3 Improving the properties of CCTO films------------------------------------------------43

Chapter 3 Experimental procedures------------------------------------------------------46
3.1 Sample preparations-------------------------------------------------------------------------------46
3.2 Preparations of Mg/Al co-doped BST precursor solution by sol-gel method--------------51
3.3 Preparations of BST target-----------------------------------------------------------------------52
3.4 Preparations of CCTO target---------------------------------------------------------------------55
3.5 Measurements and analysis---------------------------------------------------------------------57
3.5.1 Physical characterization techniques-----------------------------------------------------57
3.5.1.1 X-ray diffraction (XRD)--------------------------------------------------------------57
3.5.1.2 Scanning electron microscope (SEM)-----------------------------------------------57
3.5.1.3 N&k analyzer and ellipsometry------------------------------------------------------57
3.5.1.4 Atomic force microscope (AFM)----------------------------------------------------58
3.5.1.5 Nano indenter --------------------------------------------------------------------------58
3.5.2 Electrical characterization techniques----------------------------------------------------58
3.5.2.1 Current-voltage (I-V) measurements------------------------------------------------58
3.5.2.2 Capacitance-voltage (C-V) measurements-----------------------------------------58

Chapter 4 Improving dielectric loss and mechanical stress of barium
strontium titanate thin films by adding chromium layer-------------------60
4.1 Introduction-----------------------------------------------------------------------------------------60
4.2 Microstructure analysis--------------------------------------------------------------------------62
4.3 Improving the dielectric loss --------------------------------------------------------------------64
4.4 Improving the leakage current density ---------------------------------------------------------66
4.5 Improving the thermal stability properties -----------------------------------------------------67
4.6 Improving the residual stress properties ----------------------------------------------------70
4.7 Summary ------------------------------------------------------------------------------------------72

Chapter 5 Improving dielectric loss and enhancing figure of merit of Ba0.5Sr0.5Ti0.95Mg0.05O3 thin films by aluminum doping------------------------75
5.1 Introduction-----------------------------------------------------------------------------------------75
5.2 Physical analysis-----------------------------------------------------------------------------------76
5.3 Current density-Electric field (J-E) characteristics -------------------------------------------79
5.4 Dielectric properties analysis---------------------------------------------------------------------81
5.5 Tunability characteristics------------------------------------------------------------------------87
5.6 Summary ----------------------------------------------------------------------------------------- 89

Chapter 6 Improving dielectric loss and thermal stability of CaCu3Ti4O12 thin films by adding BST layer-----------------------------------------------------------92
6.1 Introduction-----------------------------------------------------------------------------------------92
6.2 Physical analysis-----------------------------------------------------------------------------------93
6.3 Dielectric properties-------------------------------------------------------------------------------96
6.4 Current density-Electric field (J-E) characteristics--------------------------------------------97
6.5 Thermal stability-----------------------------------------------------------------------------------99
6.6 Summary------------------------------------------------------------------------------------------101

Chapter 7 Conclusions--------------------------------------------------------------------------104

References-------------------------------------------------------------------------------------------107
[1] C. Kozyrakis, “International technology roadmap for semiconductor produces”, Semiconductor Industry Association, p. 56, 2005.
[2] L. M. Levinson, “Electronic ceramics: properties, devices, and applications”, Marcel Dekker, New York, p. 3, 1987.
[3] B. C. H. Steele, “Electronic ceramics”, Elsevier Applied Science, p. 18, 1991.
[4] D. E. Kotecki, “High dielectric materials for DRAM capacitors”, Semiconductor International, vol. 19, p.109, 1996.
[5] B. Prince, “Semiconductor Memory”, 2nd edition, p. 262, John Wiley & Sons, Chichester England, p. 14, 1997.
[6] K. Kim, C. G. Hwang, and J. G. Lee, “DRAM Technology Perspective for Gigabit Era”, IEEE Transactions on Electron Devices, vol. 45, p. 598, 1998.
[7] R. H. Dennard, “Field effect transistor memory”, U. S. Patent 3, 387, 286, granted June 4, 1968.
[8] T. C. May and M. H. Wood, “Alpha-particle-induced soft error in dynamic memories”, IEEE Transactions on Electron Devices, vol. 26, p. 28, 1979.
[9] H. Shinriki, T. Kisu, S. I. Kimura, Y. Nishioka, Y. Kawamoto and K. Mukai, “Promising storage capacitor structures with thin Ta2O5 film for low power high-density DRAMs”, IEEE Transactions on Electron Devices, vol. 37, p.1939, 1990.
[10] D. Takashima and H. Nakano, “A cell transistor scalable DRAM array architecture,” IEEE Journal of Solid-state Circuits, vol. 37, p.587, 2002.
[11] J. Alakarhu, and J. Niittylahti, “DRAM performance as a function of its structure and memory stream locality”, Microprocessors and Microsystems, vol. 28, p.57, (2004).
[12] N. M. Victor, and J. H. Ausubel, “DRAMs as model organisms for study of technological evolution”, Technological Forecasting & Social Change vol 69, p. 243, 2002.
[13] J. Lee, C. Cho, J. Lee, M. Kim, J. Lee, S. Shin, D. Kwak, K. Koh, G. Jeong, H. Jeong, T. Chung and K. Kim, “Novel cell architecture for high performance of 512-Mb DRAM with 0.12 �慆 design rule”, Journal of the Korean Physical Society, vol. 41, p. 487, 2002.
[14] M. Sakamoto, T. Katoh, H. Abiko, T. Shimizu, H. Mikoshiba, Y. Hokari, K. Hamono, and K. Kobayashi,, “Buried storage electrode cell for megabit DRAMs”, IEEE International Electron Devices Meeting, p.711, 1985.
[15] T. Ema, S. Kawanago, T. Nishi, S. Yoshida, H. Nishibe, T. Yabu, Y. Kodama, T. Nakano, and M. Taguchi, “3-dimensional stacked capacitor cell for 16M and 64M DRAMs”, IEEE International Electron Devices Meeting, p.592, 1988.
[16] K. Itoh,. “Trends in megabit in DRAM circuit design”, IEEE Journal of Solid State Ciricuit, vol. 25, p. 778, 1990.
[17] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li and C. J. Radens, “Challenges and future directions for the scaling of dynamic random access memory (DRAM)”, IBM Journal of Research and Development, Vol. 46, p. 187, 2002.
[18] K. P. Muller, B. Flietner, C. L. Hwang, and R. L. Kleinhenz, “Memory technology requirements and potential solutions”, International Technology Roadmap for Semiconductors, p. 22, 2003.
[19] K. Kim, “Perspectives on giga-bit scaled DRAM technology generation”, Microelectronics Reliability, vol. 40, p.191, 2000.
[20] K. Kim and M. Y. Jeong, “The COB stack DRAM cell at technology node below 100nm scaling issues and directions”, IEEE Transactions on Semiconductor Manufacturing, vol. 15, p. 137, 2002.
[21] Y. Kawamoto, K. Kimura, J. Nakazato and M. Nagao, “The outlook for semiconductor process and manufacturing technologies in the 0.1-um Age”, Hitachi Review, vol. 48, p. 334, 1999.
[22] J. Yugami, T. Mine, S. lijima and A. Hiraiwa, “Inter-poly SiO2/Si3N4 capacitor films 5 nm thick for deep submicron LSIs”, International Conference on Solid State Devices and Materials, p. 173, 1989.
[23] T. Licata, E. G. Colgun, J. M. E. Harper, and S. E. Luce, “Interconnect fabrication processes and development of low-cost wiring for CMOS products”, IBM Journal of Research and Development, vol. 38, p. 419, 1995.
[24] K. Koyama, T. Sakuma, S. Yamamichi, H. Watanabe, H. Aoki, S. Ohya, Y. Miyasaka, and T. Kikkawa, “A stacked capacitor with (BaxSr1-x)TiO3 for 256 M DRAM”, IEEE International Electron Devices Meeting, p. 823, 1991.
[25] A. Yuuki, M. Yamamuka, T. Makita, T. Hotikawa, T. Shibano, N. Hirano, H. Maeda, N. Mikami. K. Ono, H. Ogata, and H. Abe, “Novel stacked capacitor technology for 1 Gbit DRAMs with CVD-(Ba,Sr)TiO3 thin films on a thick storage node of Ru”, IEEE International Electron Devices Meeting, p. ll5, 1995.
[26] S. Yamaichi, P. Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H. Yabuta, K. Sato, T. tamura, and K. Nakajima, “A ECR MOCVD (Ba, Sr)TiO3 based stacked capacitor technology with RuO2/Ru/TiN/Si, storage nodes for Gbit scale DRAMs”, IEEE International Electron Devices Meeting, p. ll9, 1995.
[27] S. Ezhilvalavan, T. Y. Tseng, “Progress in the development of (Ba,Sr)TiO3 (BST) thin films for gigabit era DRAMs”, Materials Chemistry and Physics, vol. 65, p. 227, 2000.
[28] C. C. Hwang, M. H. Juang, M. J. Lai, C. C. Jaing, J. S. Chen, S. Huang, H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on the Pt/BST/Pt capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Solid-State Electron., vol. 45, p.121, 2001.
[29] L. Goux, M. Gervais, F. Gervais, A. Catherinot, C. Champeaux and F. Sabary, “Characterization of pulsed laser deposited Ba0.6Sr0.4TiO3 on Pt-coated silicon substrates”, Materials Science in Semiconductor Processing, vol. 5, p.189, 2003.
[30] J. D. Baniecki, T. Shioga, K. Kurihara, and N. Kamehara, “Investigation of the importance of interface and bulk limited transport mechanisms on the leakage current of high dielectric constant thin film capacitors”, Journal of Applied Physics, vol. 94, p. 6741, 2003.
[31] T. Licata, E. G. Colgun, J. M. E. Harper, S. E. Luce, “Interconnect fabrication processes and development of low-cost wiring for CMOS products”, IBM Journal of Research and Development, vol. 38, p.419, 1995.
[32] J. W. Liou and B. S. Chiou, “Dielectric characteristics of doped (Ba1-x, Srx)TiO3 at the paraelectric state”, Materials Chemistry and Physics, vol. 51, p. 59, 1997.
[33] Y. Tsunemine, T. Okudaira, K. Kashihara, A. Yutani, H. Shinkawata, M. K. Mazumder, Y. Ohno, M. Yoneda, Y. Okuno, A. Tsuzumitani, H Ogawa and Y. Mori, “Pt/BaxSr(1-x)TiO3/Pt Capacitor Technology for 0.15 µm Embedded Dynamic Random Access Memory”, Japanese Journal of Applied Physics, vol. 43. p. 2457, 2004.
[34] Y. J. Seo and W. S. Lee, “Chemical mechanical polishing of Ba0.6Sr0.4TiO3 film prepared by sol–gel method”, Microelectronic Engineering, vol. 75, p. 149, 2004.
[35] Z. Wang, J. Liu, T. Ren and L. Liu, “Fabrication of organic PVP doping-based Ba0.5Sr0.5TiO3 thick films on silicon substrates for MEMS applications”, Sensors and Actuators A, vol. 117, p. 293, 2005.
[36] Y. L. Cheng, Y. Wang, H. L. W. Chan, and C. L. Choy, “Preparation and characterization of BST thin films using interdigital electrodes”, Microelectronic Engineering A, vol. 66, p. 872, 2003.
[37] C. M. Wu and T. B. Wu, “Low temperature deposition of Ba0.73Sr0.27TiO3 thin films by rf magnetron sputtering”, Materials Letters, vol. 33, p.97, 1997.
[38] W. Hu , C. Yang, W. Zhang, and G. Liu, “Characteristics of Ba0.8Sr0.2TiO3 ferroelectric thin films by rf magnetron sputtering”, Ceramics International, vol. 33, p. 1299, 2007.
[39] H. Chen, C. Yang, C. Fu, Y. Pei, and L. Hu, “Ferroelectric and microstructural characteristics of Ba0.6Sr0.4TiO3 thin films prepared by rf magnetron sputtering”, Materials Science and Engineering B, vol. 121, p. 98, 2005.
[40] T. Matsumoto, A. Niino, S. Baba, K. Numata, and S. Miyake, “Low temperature preparation of perovskite oxide films by ECR sputtering assisted with microwave treatment”, Surface and Coatings Technology, vol. 174 p. 611, 2003.
[41] M. Yamamuka, T. Kawahara, A. Yuuki and K. Ono, “reaction mechanism and electrical properties of (Ba, Sr)TiO3 films prepared by liquid source chemical vapor deposition”, Japanese Journal of Applied Physics, vol. 35, p. 2530, 1996.
[42] J. H. Joo, J. B. Park, Y. Kim, K. S. Lee, J. S. Lee, J. S. Roh and J. J. Kim, “Low temperature chemical vapor deposition of (Ba, Sr)TiO3 thin films for high density dynamic random access memory capacitors”, Japanese Journal of Applied Physics, vol. 38, p. 195, 1999.
[43] S. Yamamichi, P. Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H. Yabuta, K. Sato, T. Tamura, K. Nakjima, S. Ohnishi, K. Tokashiki, Y. Hayashi, and Y. Kato, “A stacked capacitor technology with ECR plasma CVD (Ba, Sr)TiO3 for Gbit-scale DRAMs”, IEEE Transaction Electronic Devices, Vol, 44, p.1076, 1997.
[44] S. I. Jang, H. M. Jang, “Structure and electrical properties of (Ba, Sr)TiO3 thin films fabricated by the sol-gel method”, Thin Solid Films, vol. 330, p. 89, 1998.
[45] D. C. Yoo, J. Y. Lee, “Effects of post-annealing on the interface microstructure of (Ba, Sr)TiO3 thin films”, Journal of Crystal Growth, vol. 224, p. 251, 2001.
[46] H. Xu, H. Zhu, K. Hashimoto, T. Kiyomoto, T. Mukaigawa, R. Kubo, Y. Yoshino, M. Noda, Y. Suzuki, and M. Okuyama, “Preparation of BTO ferroelectric thin film by pulsed laser ablation for dielectric bolometers”, Vacuum, vol. 59, p. 628, 2000.
[47] L. Gouxa,b, M. Gervaisb, F. Gervaisb, A. Catherinotc, C. Champeauxc, F. Sabary, “Characterization of pulsed laser deposited Ba0.5Sr0.5TiO3 on Pt-coated silicon substrates”, Materials Science in Semiconductor Processing, vol. 5, p. 189, 2003.
[48] S. J. Liu, X. B. Zeng, J. H. Chu, “Thermal-sensitive BST thin film capacitors for dielectric bolometer prepared by RF magnetron sputtering”, Journal of Microelectronics, vol. 35, p. 601, 2004.
[49] M. C. Chiu, C. C. Wang, H. C. Yao, F. S. Shieu, “Microstructure and electrical properties of Ba1−xSrxTiO3 thin films prepared by RF magnetron sputtering”, Materials Chemistry and Physics, vol. 94, p. 141, 2005.
[50] Y. R. Liu, P. T. Lai, G. Q. Li, B. Li, J. B. Peng, and H. B. Lo, “Effects of post-deposition oxygen annealing on tuning properties of Ba0.8Sr0.2TiO3 thin-film capacitors for microwave integrated circuits”, Materials Chemistry and Physics, vol. 94, p. 114, 2005.
[51] M. Jain, S. B. Majumder, R. S. Katiyar, and A. S. Bhalla, “Structural and dielectric properties of heterostructured BST thin films by sol–gel technique”, Thin Solid Films, vol. 447, p. 537, 2004.
[52] T. Zhang, H. Gu, and J. Liu, “Structural and optical properties of BST thin films prepared by the sol–gel process”, Microelectronic Engineering, vol. 66, p. 860, 2003.
[53] M. Tarutani, M. Yamamuka, T. Takenaga, T. Kuroiwa, and T. Horikawa, “Improved fabrication process for Ru/BST/Ru capacitor by liquid source chemical vapor eposition”, Thin Solid Films, vol. 409, p. 8, 2002.
[54] J. H. Kwon, and S. G. Yoon, “Preparation of BST thin films deposited by metalorganic chemical vapor deposition”, Thin Solid Films, vol. 303, p. 136, 1997.
[55] K. Abe, and S. Komatsu, “Epitaxial growth and dielectric properties of Ba0.24Sr0.76TiO3 thin fllm”, Japanese Journal of Applied Physics, Vol. 33, p. 5297, 1994.
[56] H. N. A. Shareef, O. Auciello, and A. I. Kingon, “Electrical properties of ferroelectric thin film capacitors with Pt electrodes for memory applications”, Journal of Applied Physics, vol. 77, p. 2146, 1995.
[57] H. J. Cho, C. S. Kang, C. S. Hwang, J. W. Kim, H. Horh, B. T. Lee, S. I. Lee, and M. Y. Lee, “Structural and electrical properties of Ba0.5Sr0.5TiO3 films on Ir and IrO2 electrodes”, Japanese Journal of Applied Physics, vol. 36, p874, 1997.
[58] W. Hu , C. Yang, W. Zhang, and G. Liu, “Characteristics of Ba0.8Sr0.2TiO3 ferroelectric thin films by RF magnetron sputtering”, Ceramics International, vol. 33, p. 1299, 2007.
[59] W. C. Yi, T. S. Kalkur, E. Philofsky, L. Kammerdiner, “Structural and dielectric properties of Ba0.7Sr0.3TiO3 thin films grown on Pt(111)/Ti/SiO2/Si substrates”, Thin Solid Films, vol. 402, p. 307, 2002.
[60] J. H. Lee, and B. O. Park, “Influence of seeding layers and PbO cover-layers on the orientation and microstructure of PLZT thin films”, Materials Science and Engineering B, vol. 100, p. 215, 2003.
[61] T. Yamada, P. Muralt, V. O. Sherman, C. S. Sandu, and N. Setter, “Epitaxial growth of Ba0.3Sr0.7TiO3 thin films on Al2O3(001) using ultrathin TiN layer”, Applied Physics Letters, vol. 90, p. 1429, 2007.
[62] Z. Wei, H. Xu, M. Noda, and M. Okuyama, “Preparation of BaxSr1−xTiO3 thin films with seeding layer by a sol–gel method”, Journal of Crystal Growth, vol. 237, p. 443, 2002.
[63] B. S. Kang, J. S. Lee, L. Stan, J. K. Lee, R. F. DePaula, P. N. Arendt, M. Nastasi, and Q. X. Jia, “Dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films on SiO2/Si using biaxially oriented ion-beam-assisted-deposited MgO as templates”, Applied Physics Letters, vol. 85, p. 4702, 2004.
[64] W. Zhu, J. Cheng, S. Yu, J. Gong, and Z. Meng, “Enhance the properties of Ba0.6Sr0.4TiO3 thin films grown on Pt/Ti/SiO2/Si substrates using MgO seeding layers”, Applied Physics Letters, vol. 90, p. 3290, 2007.
[65] V. Reymond, D. Michau, S. Payan, M. Maglione, “Improving the dielectric losses of (Ba,Sr)TiO3 thin films using a SiO2 seeding layer”, Ceramics International, vol. 30, p. 1085, 2004.
[66] Y. C. Choi, and B. S. Lee, “Bottom electrode dependence of the properties of (Ba, Sr)TiO3 thin film capacitors”, Materials Chemistry and Physics, vol. 61, p. 124, 1999.
[67] J. X. Liao, C. R. Yang, J. H. Zhang, C. L. Fu, H. W. Chen, and W. J. Leng, “ The interfacial structures of (Ba, Sr)TiO3 films deposited by radio frequency magnetron sputtering”, Applied Surface Science, vol. 252, p. 7407, 2006.
[68] W. Hu , C. Yang, W. Zhang, and G. Liu, “Characteristics of Ba0.8Sr0.2TiO3 ferroelectric thin films by RF magnetron sputtering”, Ceramics International, vol. 33, p. 1299, 2007.
[69] H. Guo, W. Gao, and J. Yoo, “The effect of sintering temperatures on the properties of Ba0.7Sr0.3TiO3 ferroelectric films produced by electrophoretic deposition”, Materials Letters, vol. 58, p. 1387, 2004.
[70] M. C. Chiu, C. C. Wang, H. C. Yao, and F. S. Shieu, “Microstructure and electrical properties of Ba1-xSrxTiO3 thin films prepared by RF magnetron sputtering”, Materials Chemistry and Physics, vol. 94, p. 141, 2005.
[71] C. S. Liang, and J. M. Wu, “Electrical properties of W-doped (Ba0.5Sr0.5) TiO3 thin films”, Journal of Crystal Growth, vol. 274, p. 173, 2005.
[72] K. T. Kim, and C. I. Kim, “Electrical and dielectric properties of Ce-doped Ba0.6Sr0.4TiO3 thin films”, Surface and Coatings Technology, vol. 200, p. 4708, 2006.
[73] K. T. Kim, and C. I. Kim, “Structure and dielectric properties of Bi-doped Ba0.6Sr0.4TiO3 thin films fabricated by sol–gel method”, Microelectronic Engineering, vol. 66, p. 835, 2003.
[74] M. W. Cole, P. C. Joshi, M. H. Ervin, M. C. Wood, and R. L. Pfeffer, “The influence of Mg doping on the materials properties of Ba1-xSrxTiO3 thin films for tunable device applications”, Thin Solid Films, vol. 374, p. 34, 2000.
[75] M. W. Cole, P. C. Joshi, and M. H. Ervin, “La doped Ba1-xSrxTiO3 thin films for tunable device applications”, Journal of Applied Physics, vol. 89, p. 6336, 2001.
[76] L. Goux, M. Gervais, A. Catherinot, C. Champeaux, and F. Sabary, “Crystalline and electrical properties of pulsed laser deposited BST on platinized silicon substrates”, Journal of Non-Crystalline Solids, vol. 303, p. 194, 2002.
[77] S. G. Kim, S. B. Mah, N. W. Jang, D. S. Paik, and C.Y. Park, “Post-annealing in oxygen ambient for (Ba, Sr)TiO3 thin films prepared by pulsed laser deposition”, Materials Letters, vol. 43, p. 254, 2000.
[78] J. Li, and X. Dong, “Effect of post-annealing on leakage currents of (Ba, Sr)TiO3 thin film prepared by pulsed laser deposition”, Materials Letters, vol. 59, p. 2863, 2005.
[79] M. Dawber, J. F. Scott, and A. J. Hartmann, “Effect of donor and accepter dopants on Schottky barrier heights and vacancy concentrations in barium strontium titanate”, Journal of European Ceramic Society, vol. 21, p. 1633, 2001.
[80] D. Wu, A. Li, H. Ling, X. Yin, C. Ge, M, Wang, and N. Ming, “Preparation of (Ba0.5Sr0.5)TiO3 thin films by sol–gel method with rapid thermal annealing”, Applied Surface Science, vol. 165, p. 309, 2000.
[81] L. Z. Cao, Q. D. Meng, W. Y. Fu, S. F. Wang, M. Lei, B. L. Cheng, Y. L. Zhou, Z. H. Chen, “Effect of annealing on the crystal structure and dielectric properties of Ba0.6Sr0.4TiO3 thick films”, Physica B, vol. 393, p. 175, 2007.
[82] T. H. Fang, W. J. Chang, C. M. Lin, L. W. Ji, Y. S. Chang, and Y. J. Hsiao, “Effect of annealing on the structural and mechanical properties of Ba0.7Sr0.3TiO3 thin films”, Materials Science and Engineering A, vol. 426, p. 157, 2006.
[83] S. Zafar, R. E. Jones, B. Jiang, B. White, P. Chu, D. Taylor, and S. Gillespie, “Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films”, Applied Physics Letters, vol. 73, p. 175, 1998.
[84] H. W. Hwang, S. W. Nien, and K. C. Lee, “ Enhanced tunability and electrical properties of barium strontium titanate thin films by post annealing”, Applied Physics Letters, vol. 84, p. 2874, 2004.
[85] J. X. Liao , C. R. Yang, J. H. Zhang, C. L. Fu, H. W. Chen, and W. J. Leng, “The interfacial structures of (Ba, Sr)TiO3 films deposited by radio frequency magnetron sputtering”, Applied Surface Science, vol. 252, p. 7407, 2006.
[86] S. Yamamichi, A. Yamamichi, D. Park and T. J. King, “Impact of time dependent dielectric breakdown and stress-induced leakage current on the reliability of high dielectric constant (Ba,Sr)TiO3 thin-film capacitors for Gbit-scale DRAMs”, IEEE Transactions on Electron Devices, vol. 46, p. 342, 1999.
[87] S. Shirasaki, H. Yamamura, and H. Haneda, “Defect structure and oxygen diffusion in undoped and La-doped polycrystalline barium titanate”, Journal of Chemical Physics, vol. 73, p. 4640, 1980.
[88] Y. A. Jeon, T. S. Seo, and S. G. Yoon, “Improvement of the tunability and dielectric loss of Ba0.5Sr0.5TiO3 thin films for microwave tunable devices”, Japanese Journal of Applied Physics, vol. 40, p. 6496, 2001.
[89] M. W. Cole, W. D. Nothwang, C. Hubbard, E. Ngo, and M. Ervin, “Low dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods”, Journal of Applied Physics, vol. 93, p. 9218, 2003.
[90] W. J. Lee, and H. G. Kim, “Microstructure dependence of electrical properties of (Ba0.5Sr0.5)TiO3 thin films deposited on Pt/SiO2/Si”, Journal of Applied Physics, vol. 80, p. 5891, 1996.
[91] S. Saha, and S. B. Krupanidhi, “Microstructure related influence on the electrical properties of pulsed laser ablated (Ba, Sr)TiO3 thin films”, Journal of Applied Physics, vol. 88, p. 3506, 2000.
[92] B. Malic, I. Boerasu, M. Mandeljc, M. Kosec, V. Sherman, T. Yamada, N. Setter, M. Vukadinovic, “Processing and dielectric characterization of Ba0.3Sr0.7TiO3 thin films on alumina substrates”, Journal of the European Ceramic Society, vol. 27, p. 2945, 2007.
[93] K. A. Razak, A. Asadov, J. Yoo, E. Haemmerle, and W. Gao, “Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method”, Journal of Alloys and Compounds, vol. 449, p. 19, 2008.
[94] H. Chen, C. Yang, C. Fu, L. Zhao, and Z. Gao, “The size effect of Ba0.6Sr0.4TiO3 thin films on the ferroelectric properties”, Applied Surface Science, vol. 252, p. 4171, 2006.
[95] X. Zhu, D. Zheng, W. Peng, J. Zhu, X. Yuan, J. Li, M. Zhang, Y. Chen, H. Tian, and X. Xu, “Preparation, microstructure and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on Pt/Ti/SiO2/Si substrates by pulsed laser deposition”, Materials Letters, vol. 58, p. 3591, 2004.
[96] X. Zhu, J. Zhu, S. Zhou, Z. Liu, N. Ming, H. L. W. Chan, C. L. Choy, K. H. Wong, and D. Hesse, “Microstructure and dielectric properties of compositionally-graded (Ba1−xSrx)TiO3 thin films”, Materials Science and Engineering B, vol. 118, p. 219, 2005.
[97] F. Zimmermann, M. Voigts, W. Menesklou, E. I. Tiffee, “ Ba0.6Sr0.4TiO3 and BaZr0.3Ti0.7O3 thick films as tunable microwave dielectrics”, Journal of the European Ceramic Society, vol. 24, p. 1729, 2004.
[98] E. Dien, J. B. Briot, M. Lejeune, and A. Smith, “Relationship Between Processing and Electrical Behavior of BST Films Deposited by Spin Coating”, Journal of the European Ceramic Society, vol. 19, p. 1349, 1999.
[99] S. Y. Chen, H. W. Wang, and L. C. Huang, “Electrical properties of Mg/La, Mg/Nb Co-doped (Ba0.7Sr0.3)TiO3 thin films prepared by metallo-organic deposition method”, Japanese Journal of Applied Physics, vol. 40, p. 4974, 2001.
[100] T. H. Fang, W. J. Chang, C. M. Lin, L. W. Ji, Y. S. Chang, Y. J. Hsiao, “Effect of annealing on the structural and mechanical properties of Ba0.7Sr0.3TiO3 thin films”, Materials Science and Engineering A, vol. 426, p. 157, 2006.
[101] L. A. Knauss, J. M. Pond, J. S. Horwitz, and D. B. Chrisey, “The effect of annealing on the structure and dielectric properties of BaxSr1-xTiO3 ferroelectric thin films”, Applied Physics Letters, vol. 69, p. 25, 1996.
[102] T. M. Shaw, Z. Suo, and M. Huang, “The effect of stress on the dielectric properties of barium strontium titanate thin films”, Applied Physics Letters, vol. 75, p. 2129, 1999.
[103] S. Zhigang, “Stress and strain in ferroelectrics”, Current Opinion in Solid State and Materials Science, vol. 3, p. 486, 1998.
[104] Q. Jiang, Y. H. Gao, H. X. Cao, “ The effect of stress distribution on dielectric properties of compositionally graded Ba1−xSrxTiO3 thin films”, Physics Letters A, vol. 331, p. 117, 2004.
[105] J. Chang, T. H. Fang, and C. I. Weng, “Thermoviscoelastic stresses in thin films/substrate system”, Thin Solid Films, vol. 515, p. 3693, 2007.
[106] K. C. Tsai, W. F. Wu, C. G. Chao, J. T. Lee and S. W. Shen, “Improving electrical properties and thermal stability of (Ba,Sr)TiO3 thin films on Cu(Mg) bottom electrodes”, Japanese Journal of Applied Physics, vol. 45, p. 5495, 2006.
[107] K. H. Yoon, J. H. Sohn, B. D. Lee, and D. H. Knag, “Effect of LaNiO3 interlayer on dielectric properties of Ba0.5Sr0.5TiO3 thin films deposited on differently oriented Pt electrodes”, Applied Physics Letters, vol. 81, p. 5012, 2002.
[108] J. Xu, W. Menesklou, E. I. Tiffee, “ Processing and properties of BST thin films for tunable microwave devices”, Journal of the European Ceramic Society, vol. 24, p. 1735, 2004.
[109] W. Chang, J. M. Pond, S. W. Kirchoefer, and J. A. Bellott, “Strain-induced anisotropy in microwave dielectric properties of (Ba, Sr)TiO3 thin films”, Applied Physics Letters, vol. 87, p. 2429, 2005.
[110] K. B. Chong, L. B. Kong, L. F. Chen, L. Yan, C. Y. Tan, T. Yang, and C. K. Ong, “Improvement of dielectric loss tangent of Ba0.5Sr0.5TiO3 thin films for tunable microwave devices”, Journal of Applied Physics, vol. 95, p. 1416, 2004.
[111] C. H. Ma, J. H. Huang and H. Chen, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films, vol. 418, p. 73, 2002.
[112] J. H. Joo, J. M. Seon, Y. C. Jeon, K. Y. Oh, J.S. Roh, and J. J. Kim, “Improvement of leakage currents of Pt/(Ba, Sr)TiO3/Pt capacitors”, Applied Physics Letters, vol. 70, p. 3053, 1997.
[113] W. J. Lee, I. K. Park, G. E. Jang, and H. G. Kim, “ Electrical Properties and Crystal Structure of ( Ba0.5Sr0.5)TiO3 Thin Films Prepared on Pt/SiO2/Si by RF Magnetron Sputtering”, Japanese Journal of Applied Physics, vol. 34, p. 196, 1995.
[114] D. C. Shye, B. S. Chiou, C. C. Hwang, C. C. Jaing, H. W. Hsu, J. S. Chen, and H. C. Cheng, “Effects of Post-Oxygen Plasma Treatment on Pt/(Ba,Sr)TiO3/Pt Capacitors at Low Substrate Temperatures”, Japanese Journal of Applied Physics, vol. 42, p. 549, 2003.
[115] E. J. Cukauskas, S. W. Kirchoefer, and J. M. Pond, “Low-loss Ba0.5Sr0.5TiO3 thin films by inverted cylindrical magnetron sputtering”, Journal of Applied Physics, vol. 88, p. 2830, 2000.
[116] M. S. Tsai, S. C. Sun, and T. Y. Tseng, “Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering”, Journal of Applied Physics, vol. 82, p. 3482, 1997.
[117] H. J. Cho, S. Oh, C. S. Kang, C. S. Hwang, B. T. Lee, K. H. Lee, H. Horii, S. I. Lee, and M. Y. Lee, “ Improvement of leakage current characteristics of Ba0.5Sr0.5TiO3 films by N2O plasma surface treatment”, Applied Physics Letters, vol. 71, p. 3221, 1997.
[118] D. S. Wuu , R. H. Horng, C. C. Lin, and Y. H. Liu, “Characterization of (Ba, Sr)TiO3 thin-film capacitors with Ir bottom electrodes and its improvement by plasma treatment”, Microelectronic Engineering, vol. 66, p. 600, 2003.
[119] D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: One-step internal barrier layer capacitor”, Applied Physics Letter, vol. 80, p. 2153, 2002.
[120] T. B. Adams, D. C. Sinclair, and A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics”, Advanced Materials, vol. 14, p. 1321, 2002.
[121] L. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. C. Homes, “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12”, Physical Review B, vol. 65, p. 2141, 2002.
[122] A. Tataroglu, “Electrical and dielectric properties of MIS Schottky diodes at low temperatures”, Microelectronic Engineering, vol. 83, p. 2551, 2006.
[123] F. Lime, G. Ghibaudo, and B. Guillaumot, “Charge trapping in SiO2/HfO2/TiN gate stack”, Microelectronics Reliability, vol. 43, p. 1445, 2003.
[124] S. S. Kang, J. K. Park, J. Y. Choi, S. H. Nam, M. G. Kwak, S. S. Choi, and Y. S. Song, “Synthesis and characterization of Y2O3 by solution-combustion method”, Japanese Journal of Applied Physics, Vol. 43, p. 1507, 2004.
[125] A. Suisalu, J. Aarik, H. Maendar, and I. Sildos, “Spectroscopic study of nanocrystalline TiO2 thin films grown by atomic layer deposition”, Thin Solid Films, vol. 336, p. 295, 1998.
[126] J. Tsaur, Z. J. Wang, L. Zhang, M. Ichiki, J. W. Wan, and R. Maeda, “Preparation and application of lead zirconate titanate (PZT) films deposited by sol-gel method”, Japanese Journal of Applied Physics, vol. 41, p. 6664, 2002.
[127] L. Fang, and M. Shen, “Effects of postanneal conditions on the dielectric properties of CaCu3Ti4O12 thin films prepared on Pt/Ti/SiO2/Si substrates”, Journal of Applied Physics, vol. 95, p. 6483, 2004.
[128] A. J. Moulson, and J. M. Herbert, “Electroceramics-Materials, Properties, and Applications”, John Wiley & Sons, p. 151, 2003.
[129] L. Liu, H. Fan, P. Fang, L. Jin, “Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol–gel method”, Solid State Communications, vol. 142, p. 573, 2007.
[130] D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, “CaCu3Ti4O12: One-step internal barrier layer capacitor”, Applied Physics Letters, Vol. 80, p. 2153, 2002.
[131] R. L. Nigro, R. G. Toro, G. Malandrino, M. Bettinelli, A. Speghini, and I. L. Fragala, “A novel approach to synthesizing calcium copper titanate thin films with giant dielectric constants”, Advanced Materials, vol. 16, p. 891, 2004.
[132] R. Jimenez, M. L. Calzada, I. Bretos, J. C. Goes, A. S. B. Sombra, “Dielectric properties of sol–gel derived CaCu3Ti4O12 thin films onto Pt/TiO2/Si(100) substrates”, Journal of the European Ceramic Society, vol. 27, p. 3829, 2007.
[133] L. Fang, and M. Shen, “Deposition and dielectric properties of CaCu3Ti4O12 thin films on Pt/Ti/SiO2/Si substrates using pulsed-laser deposition”, Thin Solid Films, vol. 440, p. 60, 2003.
[134] M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, “High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases”, Journal of Solid State Chemistry, vol. 151, p. 323, 2000.
[135] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, “Giant dielectric constant response in a copper-titanate”, Solid State Communications, vol. 115, p. 217, 2000.
[136] L. Feng, Y. Wang, Y. Yan, G. Cao, and Z. Jiao, “Growth of highly-oriented CaCu3Ti4O12 thin films on SrTiO3(100) substrates by a chemical solution route”, Applied Surface Science, vol. 253, p. 2268, 2006.
[137] S. F. Shao, J. L. Zhang, P. Zheng, W. L. Zhong, and C. L. Wang, “Microstructure and electrical properties of CaCu3Ti4O12”, Journal of Applied Physics, vol. 99, p. 8410, 2006.
[138] B. A. Bender, and M. J. Pan, “ The effect of processing on the giant dielectric properties of CaCu3Ti4O12”, Materials Science and Engineering B, vol. 117, p. 339, 2005.
[139] J. Li, A. W. Sleight, and M. A. Subramanian, “ Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12”, Solid State Communications, vol. 135, p. 260, 2005.
[140] L. Fang, and M. Shen, “Deposition and dielectric properties of CaCu3Ti4O12 thin films on Pt/SiO2/Si substrates using pulsed-laser deposition”, Thin Solid Films, vol. 440, p. 60, 2003.
[141] W. Si, E. M. Cruz, M. F. Wsihion, and P. D. Johnson, “Epitaxial thin films of the giant-dielectric-constant material CaCu3Ti4O12 grown by pulsed-laser deposition”, Applied Physics Letters, vol. 81, p. 2056, 2002.
[142] L. Fang, M. Shen, J. Yang, and Z. Li, “ Reduced dielectric loss and leakage current in CaCu3Ti4O12/SiO2/CaCu3Ti4O12 multilayered films”, Solid State Communications, vol. 137, p. 381, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top