跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭俊銘
研究生(外文):Jiun-Ming Kuo
論文名稱:高敏感度之矽鍺奈米生醫感測之研究與應用
論文名稱(外文):The Investigation and Application of High Sensitivity SiGe Nanowire for Bio-sensor
指導教授:張國明
指導教授(外文):Kow-Ming Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:97
中文關鍵詞:奈米線 矽鍺 高敏感 生醫感測
外文關鍵詞:NanowireSiGeHigh SensitivityBio-Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中我們探討矽鍺奈米線的感測能力之優缺點,並針對氧化過後之矽鍺薄膜做研究,緊接著將此結果應用於矽鍺奈米線並作感測能力之探論。
首先,先探討著矽鍺奈米線與傳統的多晶矽奈米線差異,矽鍺奈米線擁有優於傳統多晶矽奈米線較高的導通電流,但也擁有著較高的接觸電阻。
接著,我們利用傳統的薄膜電晶體元件做為我們測試結構,探討著不統的氧化條件下所造成的電流增益情況。越高的溫度及越長的時間氧化,都會造成其電流增益。此外,我們嘗試著在不同的氧化溫度與時間的條件已達到相同的氧化厚度,其電流增益也相同,此結果為相同的氧化厚度所導致的鍺析出也是一樣的。
其次,我們探討著不同的矽鍺濃度的奈米線的蛋白質感測。越高的鍺濃度擁有較高的感測能力,但是太高的鍺濃度其感測能力卻下降,我們推測是因為表面擁有過多的缺陷所導致。
再者,我們探討著矽鍺奈米線氧化厚的感測能力,在低濃度時,其感測能力隨著氧化溫度升高而提高,但是隨著濃度的提高其感測能力可能會因為過高的氧化溫度而下降,其原因可能為氧化溫度或時間過久使的鍺濃度超過一定值時會造表面缺陷上升。
最後,除了從材料或表面處理外,我們提出了一個新穎的結構來提升其奈米線的敏感度,利用雙層的高導通與低導通電特性,來有效的決定電流的路徑,如此在相同的電場變化下可擁有著較高的影響力,已得到較高的感測能力。
In this thesis, we concentrate our efforts on the advantage and disadvantage of SiGe nanowire and Poly-Si nanowire for bio-sensor. The behavior of oxidation for SiGe film was studied in the follows. The application of the SiGe oxidation was used to enhance the sensitivity in the end of thesis.
First, we demonstrated the electric properties of SiGe and Poly-Si nanowires. The higher drive current is obtained for SiGe nanowire, but the disadvantage of the higher contact resistance appeared for SiGe nanowire.
Secondly, the thin-film-transistor (TFT) was used to understand the increase of drive current after different oxidation conditions. The higher drive current obtained for the higher temperature, oxidation time and oxygen flow. Besides, the same oxide thicknesses were achieved by controlling the different oxidation time and temperature. The same drive current improves for the same oxide thickness. The reason come form the same Ge condensed after oxidation.
Third, we studied the sensitivity of SiGe nanowire with different Ge concentration. The higher sensitivity was observed for the SiGe nanowire with high Ge concentration. However, the sensitivity decreased for the over-high Ge concentration. The reason may be that the higher defect appears on the surface.
Finally, we used the Ge condensation technique on the SiGe nanowire for bio-sensor. The sensitivity improved for the SiGe nanowire with low Ge concentration after high temperature oxidation. However, the sensitivity decreased for SiGe nanowire with higher Ge concentration. It may be that the higher defect appears on the surface.
In the end of the thesis, we introduce a novel structure to improvement the sensitivity. A double layer with high/low drive current is combined to achieve this point. The sensitivity improves under the same electric filed change by controlling the current through.
Chinese Abstract………………………………………………...i
English Abstract……………………………………………….iii
Acknowledgment……………………………………………….v
Contents………………………………………………………..vi
Table Captions……………………………………….……….. x
Figure Captions…………………………………………........xi

Chapter 1 Introduction of Nanowires
1.1 The Application of Nanowires…………….…………...1
1.2 The Materials of Nanowires Sensor……………………5
1.3 Motivation………………………….....………………………8

Chapter 2 Fabrication of Nanowires
2.1 Introduction……………..…………….……………....10
2.1.1 Lithography with Photons…………..………………10
2.1.2 Machining Using AFM, STM, NSOM.…………...10
2.1.3 Nanoimprint Lithography (NIL)...………..…………11
2.1.4 Spacer Formation……....……………………………12
2.1.5 Vapor State Synthesis….…….……………………12
2.1.6 Vapor-Liquid-Solid (VLS) Growth Approach...…….13
2.1.7 Electrochemical Deposition…..……..………………13
2.1.8 Laser Ablation……….……………..…………14
2.2 Experiment………………..…………………………...15
2.3 The Dimension of Nanowires.……….....…………...18
2.4 Results and Discussions...……….…………………...19
2.5 Summary …………………….…………………...25

Chapter 3 Electrical Properties of SiGe Film with Various Oxidation Conditions
3.1.1 An Overview of the Applications of High Mobility SiGe Alloy…………………………………………27
3.1.2 Ge Condensation Process in SiGe Film……………..27
3.1.3 Mechanism of SiGe Oxidation……………………28
3.1.4 Oxidation Behavior of SiGe……..……………29
3.1.1 Motivation…………………………………………27
3.2 The Process Flow of SiGe-Based P-MOSFET….……....32
3.3 Results and Discussions…………………..…………....37
3.3.1 Influence of Oxidation Temperature on Electrical Properties…………………………………………37
3.3.2 Influence of Oxidation Time on Electrical Properties…………………………………………38
3.3.3 Influence of Oxygen flow on Electrical Properties…………………………………………40
3.3.4 Influence of the Thickness of Pre-oxide on Electrical Properties…………………………………………41
3.3.5 Influence of Oxidation Rate on Electrical Properties………….………………………………43
3.3.6 Influence of Annealing after Oxidation on Electrical Properties…………………………………………37
3.4 Summary……………..…………….……………....32

Chapter 4 The Higher Current of SiGe Nanowire by Oxidation
4.1 Introduction……………………………………………..47
4.2 Experiment………………………………………48
4.3 Results and Discussions………………………………...51
4.4 Summary………………………………………………...53
Chapter 5 The Ge enhances the Sensitivity for Bio-Sensor
5.1 Introduction…………………………..………………..54
5.2 Experiment…………….………..………..……………55
5.3 The Dimension of nanowires……………………………59
5.4 Results and Discussions………………………………...60
5.5 Summary………………………………………………...68

Chapter 6 The Improvement of the Sensitivity for Bio-Sensor by SiGe Nanowire Oxidation
6.1 Introduction……………………………………………..69
6.2 Experiment………………………………………………70
6.3 Results and Discussions………………………………...73
6.4 Summary………………………………………………...84

Chapter 7 Conclusions and Feature Works
7.1 Conclusions……………………………………………..85
7.2 Feature Works………………………………………86
References…………………………..………………………88

Vita…………………………………………………………………..…95
Publication Lists………………………………………………………..96
[1] Q. Gao, Y. Kim, H. J. Joyce, P. Lever, S. Mokkapati, M. Buda, H. H. Tan and C. Jagadish, “Quantum Dots and Nanowires for Optoelectronic Device Applications”, ICTON, vol. 06, 242, 2006.
[2] G. Brambilla, F. Xu and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation ”, Electronics Letters, vol. 42, No. 9, 2006.
[3] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, Po-Shun Lin, Bae-Heng Tseng, Jang-Hung Shy, S. M. Sze, Chun-Yen Chang, and Chen-Hsin Lien, “A Novel Nanowire Channel Poly-Si TFT Functioning as Transistor and Nonvolatile SONOS Memory”, IEEE ELECTRON DEVICE LETTERS, vol. 28, No. 9, 809, 2007.
[4] Hyunjin Lee, Seong-Wan Ryu, Jin-Woo Han, Lee-Eun Yu, Maesoon Im, Chungjin Kim, Sungho Kim, Eujune Lee, Kuk-Hwan Kim, Ju-Hyun Kim, Dong-il Bae, Sang Cheol Jeon, Kwang Hee Kim, Gi Sung Lee, Jae Sub Oh, Yun Chang Park, Woo Ho Bae, Jung Jae Yoo, Jun Mo Yang, Hee Mok Lee, and Yang-Kyu Choi, “A Nanowire Transistor for High Performance Logic and Terabit Non-Volatile Memory Devices”, Symposium on VLSI Technology Digest of Technical Papers,144, 2007.
[5] Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species”, Science, vol. 293, 1289, August 2001.
[6] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka and R. S. Williams, “Sequence- Specific Label-Free DNA Sensors Based on Silicon Nanowires ”, Nano Lett., vol. 4, No. 2, 245, 2004.
[7] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei Zhuang and Charles M. Lieber, “Electrical detection of single viruses”, Proc. Natl. Acad. Sci. U.S.A., vol. 101, 14017, August 2004.
[8] Kook-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Min-Ho Lee, and Woo-Kyeong Seong, “Fabrication of Silicon Nanowire for Biosensor Applications”, IEEE Sensors Journal,1269, October 2006.
[9] Ajay Agarwal, I. K. Lao, K. Buddhharaju, N. Singh, N. Balasubramanian and D. L. Kwong, “Silicon Nanowire Array Bio-sensor Using Top-down CMOS Technology”, IEEE, 2004,200.
[10] Zhlyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, Evan C. Brown, Pai-Chun Chang, and Jia G. Lu, “Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays”, Appl. Phys. Lett., Vol. 89, 2131110, 2007.
[11] E. Comini, G. Faglia, G. Sberveglien, Zhengwei Pan and Zhong L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl. Phys. Lett., Vol. 81, 10, 2002.
[12] Chao Li, Daihua Zhang, Xiaolei Liu, Song Han, Tao Tang, Jie Han, and Chongwu Zhou, “In2O3 nanowires as chemical sensors”, Appl. Phys. Lett., Vol. 82, 10, 2003.
[13] Andrea Ponzoni, Elisabetta Comini, Giorgio Sberveglieri, Jun Zhou, Shao Zhi Deng, Ning Sheng Xu, Yong Ding, and Zhong Lin Wang, “Ultrasenstive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., Vol. 88, 203101, 2006.
[14] Woong-Ki Hong, Dae-Kue Hwang, Il-Kyu Park, Gunho Jo, Sunghoon Song, Seong-Ju Park, and Takhee Lee, “Realization of highly reproducible ZnO nanowire field effect transistor with n-channel depletion and enhancement modes”, Appl. Phys. Lett, Vol. 90, 243103, 2007.
[15] Haiqing Liu, Jun Kameoka, David A. Czaplewski, and H. G. Craighead, “Polymeric Nanowire Chemical Sensor”, Nano Lett., Vol. 4, 671, (2004)
[16] Yufeng Ma, Jianming Zhang, Guojin Zhang, and Huixin He, “Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates”, American Chemical Society, Vol. 126, 7097, 2004.
[17] Kyun Tae Kim, Sang Jun Sim, and Sung Min Cho, “Hydrogen Gas Sensor Using Pd Nanowires Electro-Deposited Into Anodized Alumina Template”, IEEE Sensors Journal, Vol. 6, 509, 2006.
[18] Frederic Favier, Erich C. Walter, MichealP. Zach, Thorsten Benter, and Reginald M. Penner, ”Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays”, Science, Vol. 293, 2227, 2001.
[19] Yee-Chia Yeo, Qiang Lu, Tsu-Jae King, Chenming Hu, Takayuki Kawashima, Masato Oishi, Supika Mashiro, and Junro Sakai, “Enhanced Performance in Sub-100 nm CMOSFETs using Strained Epitaxial Silicon-Germanium”, IEDM, 753, 2000.
[20] H. H. Solak, D. He, W. Li, S. Singh- Gasson, and F. Cerrina, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett.,Vol. 75, No. 15, 2328, October 1999.
[21] R. Nemutudi, N.J. Curson, N.J. Appleyard, D.A. Ritchie, G.A.C. Jones , “Modification of a shallow 2DEG by AFM lithography”, Microelectronic Engineering, Vol. 57, 967, 2001.
[22] X.-M. Yan, S. Kwon, A. M. Contreras, J. Bolor, and G. A. Somorjai, “Fabrication of Large Number Density Platinum Nanowire Arrays by Size Reduction Lithography and Nanoimprint Lithography”, vol. 5, No. 4, 745, 2005.
[23] Y.-K. Choi, T.-J. King, C. Hu , “A Spacer Patterning Technology for Nanoscale CMOS”, IEEE Transactions on Electron Devices, Vol. 49, No. 3, 436, March 2002.
[24] Paritosh Mohanty, Isun Yoon, Teajoon Kang, Kwanyong Seo, Kumar S. K. Varadwaj, Wonjun Choi, Q-Han Park, Jae Pyung Ahn, Yung Doug Suh, Hyotcherl Ihee, and Bongsoo Kim, “Simple Vapor-Phase Synthesis of Single-Crystalline Ag Nanowires and Single-Nanowire Surface-Enhanced Raman Scattering”, J. AM. CHEM. SOC., Vol. 129, 9576, July 2007.
[25] Chao Li, Daihua Zhang, Song Han, Xiaolei Liu, Tao Tang, and Chonggwu Zhou, “Diameter-Controlled Growth of Single- Crystalline In2O3 Nanowires and Their Electronic Properties”, Adv. Mater., Vol. 15, No. 2, 143, January 2003.
[26] Chao Li, Daihua Zhang, Song Han, Xiaolei Liu, Tao Tang, and Chonggwu Zhou, “Diameter-Controlled Growth of Single- Crystalline In2O3 Nanowires and Their Electronic Properties”, Adv. Mater., Vol. 15, No. 2,143, January 2003.
[27] K.W ang, S. Y. Chung and D. Kim, “Morphology of Si nanowires fabricated by laser ablation using gold catalysts”, Applied Physics A 79, 895, Materials Science & Processing
[28] S. Takagi, “Subband Structure Engineering for Realizing Scaled CMOS with High Performance and Low Power Consumption” IEICE Trans. Electron., E85-C, 1064,2002.
[29] D.K. Nayak, C. S. Woo, J. S. Park, K. L. Wang and K. P. Macwilliams, “High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si”Appl. Phys. Lett., 62, 2853,1993.
[30] K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, and H. S. P. Wong, “Strained Si NMOSFETs for high performance CMOS technology “, Symp. VLSI Technology, 59. 2001.
[31] K. Rim, J. Chu, H chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, Koester, K. Chan, D. Boyd, M. Ieong, and H. S. Wong “racteristics and device design of sub-100 nm strained Si N- and PMOSFETs” , Symp VlSI Techology, 98 2002.
[32] G.. Hock, E. Kohn, C. Rosenblad, H. von Kanel, H. J. Herzog, and UKonig, “High hole mobility in Si0.17Ge0.83 channel metal–oxide–semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 76, 3920, 2000.
[33] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, and J. Michel, “Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates”, Appl. Phys. Lett. 59, 811, 1991.
[34] E. A. Fitzgerald, Y. H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir. “Relaxed GexSi1–x structures for III–V integration with Si and high mobility two-dimensional electron gases in Si “Vac. Sci. Techol. B 10, 1807, 1992.
[35] T. Tezuka, N. Sugiyama, T. Mizuno, and S. Takagi. “A Novel Fabrication Technique of Ultrathin and Relaxed SiGe Buffer Layers with High Ge Fraction for Sub-100 nm Strained Silicon-on-Insulator MOSFETs “ Jpn. J. Appl. Phys. 40, 2866, 2001.
[36] S.-G. Park, W. S. Liu, and M.-A. Nicolet, “Kinetics and mechanism of wet oxidation of GexSi1−x alloys “ J. Appl. Phys. 75, 1764, 1994.
[37] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. lyer, and F. M. d’Heurle, “Diffusion versus oxidation rates in silicon-germanium alloys”, Appl. Phys. Lett., Vol. 59, 1, 1991.
[38] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge con- centration on SiGe oxidation behavior”, Appl. Phys. Lett., Vol. 59, 10, 1991.
[39] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, “Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation”, Appl. Phys. Lett., Vol. 54, 7, 1989.
[40] H. Tsutsu, W. J. Edwards, and D. G. Ast, “Oxidation of polycrystalline-SiGe alloys”, Appl. Phys. Lett., Vol. 63, 3, 1994.
[41] Carl Wagner, “Formation of Composite Scales Consisting of Oxides of Different Metals”, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol. 99, 369, 1952.
[42] Carl Wagner, “Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys”, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol. 103, 627, 1956.
[43] T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction”, Appl. Phys. Lett., Vol. 79, 1789, 2001.
[44] N. Sugiyama, T. Tezuka, T. Mizuno, M. Suzuki, Y. Ishikawa, N. Shibata, and S. Takagi, “Temperature effects on Ge condensation by thermal oxidation of SiGe-on-insulator structures”, Journal of Applied Physics, Vol. 95, 8, 2004.
[45] S. Balakumar, Suo Peng, K. M. Hoe, A. Agarwal, G. Q. Lo, R. Kumar, N. Balasubramanian, and D. L. Kwong, “SiGeO layer formation mechanism at the SiGe/oxide interface during Ge condensation”, Appl. Phys. Lett., Vol. 90, 32111, 2007.
[46] Shu Nakaharai, Tsutormu Tezuka, Naoharu Sugiyama, Yoshihiko Moriyama, and Shin-ichi Takagi, “Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique”, Appl. Phys. Lett., Vol. 83, 17, 2003.
[47] S. Nakaharai, T. Tezuka , N. Hirashita, E. Toyoda, Y. Moriyama, N. Sugiyama, and S. Takagi, “Generation of Crystal Defects in Ge-on-Insulator (GOI) Layers in Ge-condensation Process”, SiGe Technology and Device Meeting, 2006. ISTDM 2006, 1-2, 2006.
[48] B. Vincent, J. F. Damiencourt, V. Delaye, R. Gassilloud, L. Clavelier, and Y. Morand, “Stacking fault generation during relaxation of silicon germanium on insulator layers obtained by the Ge condensation technique”, Appl. Phys. Lett., Vol. 90, 074101, 2007.
[49] Tsutomu Tezuka, Naoharu Sugiyama, Tomohisa Mizuno, and Shin-ichi Takagi, “Ultrathin Body SiGe-on-Insulator pMOSFETs With High-Mobility SiGeSurface Channels”, IEEE TRANSACTION ON ELECTRON DEVICES, Vol. 50, 5, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊