|
[1] Q. Gao, Y. Kim, H. J. Joyce, P. Lever, S. Mokkapati, M. Buda, H. H. Tan and C. Jagadish, “Quantum Dots and Nanowires for Optoelectronic Device Applications”, ICTON, vol. 06, 242, 2006. [2] G. Brambilla, F. Xu and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation ”, Electronics Letters, vol. 42, No. 9, 2006. [3] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, Po-Shun Lin, Bae-Heng Tseng, Jang-Hung Shy, S. M. Sze, Chun-Yen Chang, and Chen-Hsin Lien, “A Novel Nanowire Channel Poly-Si TFT Functioning as Transistor and Nonvolatile SONOS Memory”, IEEE ELECTRON DEVICE LETTERS, vol. 28, No. 9, 809, 2007. [4] Hyunjin Lee, Seong-Wan Ryu, Jin-Woo Han, Lee-Eun Yu, Maesoon Im, Chungjin Kim, Sungho Kim, Eujune Lee, Kuk-Hwan Kim, Ju-Hyun Kim, Dong-il Bae, Sang Cheol Jeon, Kwang Hee Kim, Gi Sung Lee, Jae Sub Oh, Yun Chang Park, Woo Ho Bae, Jung Jae Yoo, Jun Mo Yang, Hee Mok Lee, and Yang-Kyu Choi, “A Nanowire Transistor for High Performance Logic and Terabit Non-Volatile Memory Devices”, Symposium on VLSI Technology Digest of Technical Papers,144, 2007. [5] Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species”, Science, vol. 293, 1289, August 2001. [6] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka and R. S. Williams, “Sequence- Specific Label-Free DNA Sensors Based on Silicon Nanowires ”, Nano Lett., vol. 4, No. 2, 245, 2004. [7] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei Zhuang and Charles M. Lieber, “Electrical detection of single viruses”, Proc. Natl. Acad. Sci. U.S.A., vol. 101, 14017, August 2004. [8] Kook-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Min-Ho Lee, and Woo-Kyeong Seong, “Fabrication of Silicon Nanowire for Biosensor Applications”, IEEE Sensors Journal,1269, October 2006. [9] Ajay Agarwal, I. K. Lao, K. Buddhharaju, N. Singh, N. Balasubramanian and D. L. Kwong, “Silicon Nanowire Array Bio-sensor Using Top-down CMOS Technology”, IEEE, 2004,200. [10] Zhlyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, Evan C. Brown, Pai-Chun Chang, and Jia G. Lu, “Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays”, Appl. Phys. Lett., Vol. 89, 2131110, 2007. [11] E. Comini, G. Faglia, G. Sberveglien, Zhengwei Pan and Zhong L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl. Phys. Lett., Vol. 81, 10, 2002. [12] Chao Li, Daihua Zhang, Xiaolei Liu, Song Han, Tao Tang, Jie Han, and Chongwu Zhou, “In2O3 nanowires as chemical sensors”, Appl. Phys. Lett., Vol. 82, 10, 2003. [13] Andrea Ponzoni, Elisabetta Comini, Giorgio Sberveglieri, Jun Zhou, Shao Zhi Deng, Ning Sheng Xu, Yong Ding, and Zhong Lin Wang, “Ultrasenstive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., Vol. 88, 203101, 2006. [14] Woong-Ki Hong, Dae-Kue Hwang, Il-Kyu Park, Gunho Jo, Sunghoon Song, Seong-Ju Park, and Takhee Lee, “Realization of highly reproducible ZnO nanowire field effect transistor with n-channel depletion and enhancement modes”, Appl. Phys. Lett, Vol. 90, 243103, 2007. [15] Haiqing Liu, Jun Kameoka, David A. Czaplewski, and H. G. Craighead, “Polymeric Nanowire Chemical Sensor”, Nano Lett., Vol. 4, 671, (2004) [16] Yufeng Ma, Jianming Zhang, Guojin Zhang, and Huixin He, “Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates”, American Chemical Society, Vol. 126, 7097, 2004. [17] Kyun Tae Kim, Sang Jun Sim, and Sung Min Cho, “Hydrogen Gas Sensor Using Pd Nanowires Electro-Deposited Into Anodized Alumina Template”, IEEE Sensors Journal, Vol. 6, 509, 2006. [18] Frederic Favier, Erich C. Walter, MichealP. Zach, Thorsten Benter, and Reginald M. Penner, ”Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays”, Science, Vol. 293, 2227, 2001. [19] Yee-Chia Yeo, Qiang Lu, Tsu-Jae King, Chenming Hu, Takayuki Kawashima, Masato Oishi, Supika Mashiro, and Junro Sakai, “Enhanced Performance in Sub-100 nm CMOSFETs using Strained Epitaxial Silicon-Germanium”, IEDM, 753, 2000. [20] H. H. Solak, D. He, W. Li, S. Singh- Gasson, and F. Cerrina, “Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography”, Appl. Phys. Lett.,Vol. 75, No. 15, 2328, October 1999. [21] R. Nemutudi, N.J. Curson, N.J. Appleyard, D.A. Ritchie, G.A.C. Jones , “Modification of a shallow 2DEG by AFM lithography”, Microelectronic Engineering, Vol. 57, 967, 2001. [22] X.-M. Yan, S. Kwon, A. M. Contreras, J. Bolor, and G. A. Somorjai, “Fabrication of Large Number Density Platinum Nanowire Arrays by Size Reduction Lithography and Nanoimprint Lithography”, vol. 5, No. 4, 745, 2005. [23] Y.-K. Choi, T.-J. King, C. Hu , “A Spacer Patterning Technology for Nanoscale CMOS”, IEEE Transactions on Electron Devices, Vol. 49, No. 3, 436, March 2002. [24] Paritosh Mohanty, Isun Yoon, Teajoon Kang, Kwanyong Seo, Kumar S. K. Varadwaj, Wonjun Choi, Q-Han Park, Jae Pyung Ahn, Yung Doug Suh, Hyotcherl Ihee, and Bongsoo Kim, “Simple Vapor-Phase Synthesis of Single-Crystalline Ag Nanowires and Single-Nanowire Surface-Enhanced Raman Scattering”, J. AM. CHEM. SOC., Vol. 129, 9576, July 2007. [25] Chao Li, Daihua Zhang, Song Han, Xiaolei Liu, Tao Tang, and Chonggwu Zhou, “Diameter-Controlled Growth of Single- Crystalline In2O3 Nanowires and Their Electronic Properties”, Adv. Mater., Vol. 15, No. 2, 143, January 2003. [26] Chao Li, Daihua Zhang, Song Han, Xiaolei Liu, Tao Tang, and Chonggwu Zhou, “Diameter-Controlled Growth of Single- Crystalline In2O3 Nanowires and Their Electronic Properties”, Adv. Mater., Vol. 15, No. 2,143, January 2003. [27] K.W ang, S. Y. Chung and D. Kim, “Morphology of Si nanowires fabricated by laser ablation using gold catalysts”, Applied Physics A 79, 895, Materials Science & Processing [28] S. Takagi, “Subband Structure Engineering for Realizing Scaled CMOS with High Performance and Low Power Consumption” IEICE Trans. Electron., E85-C, 1064,2002. [29] D.K. Nayak, C. S. Woo, J. S. Park, K. L. Wang and K. P. Macwilliams, “High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si”Appl. Phys. Lett., 62, 2853,1993. [30] K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, and H. S. P. Wong, “Strained Si NMOSFETs for high performance CMOS technology “, Symp. VLSI Technology, 59. 2001. [31] K. Rim, J. Chu, H chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, Koester, K. Chan, D. Boyd, M. Ieong, and H. S. Wong “racteristics and device design of sub-100 nm strained Si N- and PMOSFETs” , Symp VlSI Techology, 98 2002. [32] G.. Hock, E. Kohn, C. Rosenblad, H. von Kanel, H. J. Herzog, and UKonig, “High hole mobility in Si0.17Ge0.83 channel metal–oxide–semiconductor field-effect transistors grown by plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 76, 3920, 2000. [33] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, and J. Michel, “Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates”, Appl. Phys. Lett. 59, 811, 1991. [34] E. A. Fitzgerald, Y. H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir. “Relaxed GexSi1–x structures for III–V integration with Si and high mobility two-dimensional electron gases in Si “Vac. Sci. Techol. B 10, 1807, 1992. [35] T. Tezuka, N. Sugiyama, T. Mizuno, and S. Takagi. “A Novel Fabrication Technique of Ultrathin and Relaxed SiGe Buffer Layers with High Ge Fraction for Sub-100 nm Strained Silicon-on-Insulator MOSFETs “ Jpn. J. Appl. Phys. 40, 2866, 2001. [36] S.-G. Park, W. S. Liu, and M.-A. Nicolet, “Kinetics and mechanism of wet oxidation of GexSi1−x alloys “ J. Appl. Phys. 75, 1764, 1994. [37] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. lyer, and F. M. d’Heurle, “Diffusion versus oxidation rates in silicon-germanium alloys”, Appl. Phys. Lett., Vol. 59, 1, 1991. [38] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge con- centration on SiGe oxidation behavior”, Appl. Phys. Lett., Vol. 59, 10, 1991. [39] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, “Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation”, Appl. Phys. Lett., Vol. 54, 7, 1989. [40] H. Tsutsu, W. J. Edwards, and D. G. Ast, “Oxidation of polycrystalline-SiGe alloys”, Appl. Phys. Lett., Vol. 63, 3, 1994. [41] Carl Wagner, “Formation of Composite Scales Consisting of Oxides of Different Metals”, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol. 99, 369, 1952. [42] Carl Wagner, “Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys”, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol. 103, 627, 1956. [43] T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction”, Appl. Phys. Lett., Vol. 79, 1789, 2001. [44] N. Sugiyama, T. Tezuka, T. Mizuno, M. Suzuki, Y. Ishikawa, N. Shibata, and S. Takagi, “Temperature effects on Ge condensation by thermal oxidation of SiGe-on-insulator structures”, Journal of Applied Physics, Vol. 95, 8, 2004. [45] S. Balakumar, Suo Peng, K. M. Hoe, A. Agarwal, G. Q. Lo, R. Kumar, N. Balasubramanian, and D. L. Kwong, “SiGeO layer formation mechanism at the SiGe/oxide interface during Ge condensation”, Appl. Phys. Lett., Vol. 90, 32111, 2007. [46] Shu Nakaharai, Tsutormu Tezuka, Naoharu Sugiyama, Yoshihiko Moriyama, and Shin-ichi Takagi, “Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique”, Appl. Phys. Lett., Vol. 83, 17, 2003. [47] S. Nakaharai, T. Tezuka , N. Hirashita, E. Toyoda, Y. Moriyama, N. Sugiyama, and S. Takagi, “Generation of Crystal Defects in Ge-on-Insulator (GOI) Layers in Ge-condensation Process”, SiGe Technology and Device Meeting, 2006. ISTDM 2006, 1-2, 2006. [48] B. Vincent, J. F. Damiencourt, V. Delaye, R. Gassilloud, L. Clavelier, and Y. Morand, “Stacking fault generation during relaxation of silicon germanium on insulator layers obtained by the Ge condensation technique”, Appl. Phys. Lett., Vol. 90, 074101, 2007. [49] Tsutomu Tezuka, Naoharu Sugiyama, Tomohisa Mizuno, and Shin-ichi Takagi, “Ultrathin Body SiGe-on-Insulator pMOSFETs With High-Mobility SiGeSurface Channels”, IEEE TRANSACTION ON ELECTRON DEVICES, Vol. 50, 5, 2003.
|