跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 04:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江忠祐
研究生(外文):Chung-Yu Chiang
論文名稱:雙閘極奈米線非揮發性記憶元件之研製與分析
論文名稱(外文):Fabrication and Characterization of Double-Gated Nanowire SONOS Devices
指導教授:林鴻志林鴻志引用關係黃調元黃調元引用關係
指導教授(外文):Horng-Chih LinTiao-Yuan Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:64
中文關鍵詞:非揮發性記憶體雙閘極奈米線
外文關鍵詞:SONOS memorydouble gatenanowire
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們成功地利用邊襯蝕刻技術(sidewall spacer over-etching technique)製作出具有奈米線通道的薄膜記憶體結構。同時,我們也利用雙閘極結構,對於元件的基本電性以及寫入/抹除特性做詳盡的研究與分析。
由於奈米線與雙閘極結構具有高表面體積比(high surface-to-volume ratio)能有效提升閘極控制能力,且在降低短通道效應與次臨界擺幅(subthreshold swing)方面都有顯著的改善。在此奈米線結構中,氮化矽覆蓋層被證實能有效降低漏電流。另外,利用雙閘極結構,我們提出一種新的「可調變式寫入/抹除速度」的方法。在一最佳化偏壓條件下,不需改變元件材料或介電層厚度就能有效提升寫入/抹除速度。然而,可靠度的表現需要有效地被改善,例如在通道形狀、製程步驟或是介電層材料方面著手,才能在實際上有所應用。
In this thesis, nanowire SONOS devices were fabricated by use of sidewall spacer over-etching technique. Furthermore, the fabricated devices were equipped with double-gated configuration. Impacts of the structural features on basic transfer characteristics and programming/erasing (P/E) characteristics were investigated and discussed in detail. It was found that the nanowire channel and double-gated structures were capable of enhancing the gate controllability by taking advantage of high surface-to-volume ratio, and led to improved characteristics such as reduced short channel effects and better subthreshold swing. To reduce the off-state leakage, the adoption of a silicon nitride (SiN) hardmask layer was demonstrated. Besides, a new concept of modulating the P/E speed with the double-gated operation was also proposed in this thesis. It was shown that the P/E speed could be enhanced with an optimized biasing condition. Nevertheless, the reliability characteristics of the NW SONOS devices remain an issue for practical application. Further optimizations in NW shape, process condition, as well as the ONO structure are needed.
Chapter 1 Introduction………………………………………………1
1-1 Overview of SONOS-Type Memory Devices …… …1
1-2 Overview of Double-Gate Technology ……………4
1-3 Motivation and Intention of this Study ………5
1-4 Thesis Organization ………………………………5

Chapter 2 Device Fabrication and Basic Concepts of
SONOS Memory Devices……………………………………7
2-1 Device Fabrication …………………………………7
2-2 Program and Erase Mechanisms ……………………8
2-2-1 Channel Hot Electron Injection …………9
2-2-2 Fowler-Nordheim Tunneling ………………10
2-2-3 Band to Band Tunneling……………………10
2-3 eliability Issues …………………………………11

Chapter 3 Results and Discussion………………………………13
3-1 Basic Transfer haracteristics…………………13
3-1-1 General Backgrounds………………………13
3-1-2 Leakage Current …………………………14
3-1-3 Threshold Voltage Modulation …………18
3-2 Program/Erase Characteristics…………………19
3-2-1 Basic Program/Erase Operation…………19
3-2-2 Application of Double-Gate Structure
in SONOS……………………………………21
3-2-3 Improve Program/Erase Speed with
Optimized Top-Gate Voltage………………22

Chapter 4 Conclusion and Futrue Work…………………………24
4-1 Conclusion…………………………………………24
4-2 Future Work ………………………………………25


References……………………………………………………………27
Figure…………………………………………………………………34
Vita……………………………………………………………………64
[1] International Technology Roadmap for Semiconductor, Process Integration, Devices, and Structures, 2007.
[2] M. H. White, D. A. Admas, and J. Bu. “On the go with SONOS,” IEEE Circuits and Devices Magazine, pp. 22-31, 2000.
[3] A. Shappir, E. Lusky, G. Cohen, I. Bloom, M. Janai and B. Eitan, “The Two-Bit NROM Reliability,” IEEE Trans. Device Mater. Reliabil, vol. 4, pp. 397-403, 2004.
[4] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, K. Kim, “A Novel SONOS Structure of SiO2/SiN/Al2O3 with TaN Metal Gate for Multi-Giga Bit Flash Memeries,” IEDM Tech. Digest, session 26.5, 2003.
[5] Y. Park, J. Choi, C. Kang, C. Lee, Y. Shin, B. Choi, J. Kim, S. Jeon, J. Sel, J. Park, K. Choi, T. Yoo, J. Sim, K. Kim, “Highly Manufacturable 32Gb Multi–Level NAND Flash Memory with 0.0098 μm2 Cell Size using TANOS(Si-Oxide-Al2O3-TaN) Cell Technology,” IEDM Tech. Digest, session 2.1, 2006.
[6] X. Wang and D. K. Kwong, “A Novel high-k SONOS Memory Using TaN/Al2O3/Ta2O5/HfO2/Si Structure for Fast Speed and Long Retention Operation,” IEEE Trans. Electron Devices, vol. 53, pp. 78-82, 2006.
[7] Y. N. Tan, W. K. Chim, W.K. Choi, M. S. Joo, and B. J. Cho, “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation,” IEEE Trans. Electron Devices, vol. 53, pp. 654-662,2006.
[8] M. Takata, S. Kondoh, T. Sakaguchi, H.Choi, J-C. Shim, H. Kurino, M. Koyanagi, “New Non-Volatile Memory with Extremely High Density Metal Nano-Dots,” IEDM Tech. Digest, session 22.5, 2003.
[9] K.-H. Joo, X. Wang, S.-H. Lim, S.-J. Baik, Y.-W. Cha, I.-S. Yeo, Y.-K. Cha, I. K. Yoo, U.-I. Chung, J. T. Moon, and B.-I. Ryu, “Novel Transition Layer Engineered Si Nanocrystal Flash Memory with MHSOS Structure Featuring Large Vth Window and Fast P/E Speed,” IEDM Tech. Digest, session 33.5, 2005.
[10] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. C. Chen, J. Ku, K.Y. Hsieh, R. Liu, and C. Y. Lu, “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” IEDM Tech. Digest, session 22.3, 2005.
[11] Y. Q. Wang, D. Y. Gao, W. S. Hwang, C. Shen, G. Zhang, G. Samudra, Y. C. Yeo, W. J. Yoo, “Fast Erasing and Highly Reliable MONOS Type Memory with HfO2 High-k Trapping Layer and Si3N4/SiO2 Tunneling Stack,” IEDM Tech. Digest, session 37.4, 2006.
[12] R. Ohba, Y. Mitani, N. Sugiyama, and S. Fujita, “25 nm Planar Bulk SONOS-type Memory with Double Tunnel Junction,” IEDM Tech. Digest, session 37.1, 2006.
[13] C. Y. Ng, T. P. Chen, M. Yang, J. B. Yang, L. Ding, C. M. Li, A. Du, and
A. Trigg, “Impact of Programming Mechanisms on the Performance and
Reliability of Nonvolatile Memory Devices Based on Si Nanocrystals,” IEEE Trans. Electron Devices, vol. 53, pp. 663–667, 2006.
[14] G. L. Chindalore, C. T. Swift, and D. Burnett, “A New Combination-Erase Technique for Erasing Nitride Based (SONOS) Nonvolatile Memories,” IEEE Electron Device Letters, vol. 24, pp. 257-259, 2003.
[15] H. T. Lue, Y. H. Shih, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Novel Soft Erase and Re-Fill Methods for a p+ Poly Gate Nitride Trapping Non-Volatile Memory Device with Excellent Endurance and Retention Properties,” Proceedings 2005 International Reliability Physics Symposium, session 2D-3 pp. 168-174, 2005.
[16] C. C. Yeh,W. J. Tsai, M. I. Liu, T. C. Lu, S. K. Cho, C. J. Lin, T. Wang, S. Pan, and C. Y. Lu, “PHINES : A Novel Low Power Program/Erase, Small Pitch, 2-Bit per Cell Flash Memory,” IEDM Tech. Digest, session 37.4, 2002.
[17] L. Chang, S. Tang, T. J. King, J. Bokor, and Chenming Hu, “Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs,” IEDM Tech. Digest, session 31.2, 2000.
[18] H. S. P Wong, D. J. Frank, P. M. Solomon, “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation,” IEDM Tech. Digest, session 15.2, 1998.
[19] E. J. Nowak, I. Aller, T. Ludwig, K. Kim, R. V. Joshi, C. T. Chuang, K. Bernstein, R. Puri, ‘Turning silicon on its edge,” IEEE Circuits and Devices Magazine, pp. 20-31, 2004.
[20] H. S. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, J. J. Welser, “Nanoscale CMOS,” Proc. IEEE, vol.87, pp. 537, 1999.
[21] M. Ieong, E. C. Jones, T. Kanarsky, Z. Ren, O. Dokumaci, R. A. Roy, L. Shi, T. Furukawa, Y. Taur, R. J. Miller, H. S. P. Wong, “Experimental Evaluation of Carrier Transport and Device Design for Planar Symmetric/Asymmetric Double-Gate/Ground-Plane CMOSFETs,” IEDM Tech. Digest, session 19.6 2001.
[22] T. Tanaka, K. Suzuki, H. Horie, and T. Sugii, “Ultrafast Operation of Vth-Adjusted p+-n+ Double-Gate SOI MOSFET's,” IEEE Electron Device Letters, vol. 15, pp. 386-388, 1994.
[23] M. Masahara, R. Surdeanu, L. Witters, G. Doornbos, V. H. Nguyen, G. Van den bosch, C. Vrancken, K. Devriendt, F. Neuilly, E. Kunnen, E. Suzuki, M. Jurczak and S. Biesemans, “Independent double-gate FinFETs with asymmetric gate stacks,” Microelectronic Engineering, vol. 84, Issues 9-10, pp. 2097-2100, 2007.
[24] S. Tam, P. K. Ko, C. Hu, “Lucky-electron Model of Channel Hot-Electron Injection in MOSFET'S,” IEEE Trans. Electron Devices, vol.31, pp. 1116~1125, 1984.
[25] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2,” IEEE Trans. Electron Devices, vol. 15, pp. 686-686, 1968.
[26] W. J. Tsai, S. H. Gu, N. K. Zous, C. C. Yeh, C. C. Liu, C. H. Chen, T. H. Wang, S. Pan, and C. Y. Lu, “Cause of Data Retention Loss in a Nitride-Based Localized Trapping Storage Flash Memory Cell,” Reliability Physics Symposium Proceedings, pp. 34~38, 2002.
[27] S. S. Chung, P. Y. Chiang, G. Chou, C. T. Huang, P. Chen, C. H. Chu, C. C. H. Hsu, “A novel Leakage Current Separation Technique in a Direct Tunneling Regime Gate Oxide SONOS Memory Cell,” IEDM Tech. Digest, session 26.6, 2003.
[28] M. H. White, J. W. Dzimianski, M. C. Peckerar, “Endurance of Thin-Oxide Nonvolatile MNOS Memory Transistors,” IEEE Trans. Electron Devices, vol. 24, pp. 577-580, 1977.
[29] Y. F. Huang, H. C. Lin, and T. Y. Huang, “A Study of Thin-Film Transistors with Poly-Si Nanowire Channels Fabricated by LTPS Technology,” Master Thesis, Institute of Electronics Engineering, National Chiao Tung University, 2007.
[30] G. Lixin, and J. G. Fossum, ”Analytical Modeling of Quantization and Volume Inversion in Thin Si-Film DG MOSFETs,” IEEE Trans. Electron Devices, vol.49, pp. 287-294, 2002.
[31] H. K. Lim and J. G. Fossum, “Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET's,” IEEE Trans. Electron Devices, vol. 33, pp. 1563-1571, 1983.
[32] M. Masahara, L. Yongxun, K. Sakamoto, K. Endo, T. Matsukawa, K. Ishii, T. Sekigawa, H. Yamauchi, H. Tanoue, S. Kanemaru, H. Koike, E. Suzuki, ” Demonstration, analysis, and device design considerations for independent DG MOSFETs,” IEEE Trans. Electron Devices, vol. 52, pp. 2046-2053, 2005.
[33] J. Fu, N. Singh, K.D Buddharaju, S.H.G. Teo, C. Shen,Y. Jiang, C. Zhu, M.B. Yu, G.Q. Lo, N. Balasubramanian, D.L. Kwong, E. Gnani, G. Baccarani, “Si-Nanowire Based Gate-All-Around Nonvolatile SONOS Memory Cell,” IEEE Electron Device Letters, vol. 29, pp. 518, 2008.
[34] A. Padilla, S. Lee, D. Carlton, and T.-J. K. Liu, “Enhanced Endurance of Dual-bit SONOS NVM Cells Using the GIDL Read Method,” Symp. VLSI Tech. Dig., pp.142-143, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊