跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林高照
研究生(外文):Kao-Chao Lin
論文名稱:低溫合成之奈米碳管與薄膜側向場發射子之場發射特性研究
論文名稱(外文):Study on the Field Emission Characteristics of Low-Temperature-Synthesized Carbon Nanotubes and Thin Film Edge Field Emitters
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Huang-Chung Cheng
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:159
中文關鍵詞:場發射奈米碳管低溫側向場發射子
外文關鍵詞:field emissioncarbon nanotubeslow temperatureEdge field emitters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們主要研究標的為場發射材料與場發射元件的低溫製作方法與其場發射特性研究。為了可以均勻且低成本的將奈米碳管應用於場發射顯示器上,熱化學氣相沈積比起其他方法具有簡單且低成本的優勢,因此被認為是最有潛力的碳管成長方法之一。藉由多層結構催化金屬的使用,我們可利用熱化學氣相沈積在低溫下於玻璃基板上合成奈米碳管。多層結構催化金屬的組成包含支撐層、中間層與催化金屬,其中支撐層可以有效幫助催化金屬均勻分散避免其聚合成過大的粒子,而中間層除了幫助催化金屬保持均勻分散外還可以促進碳原子的析出進而形成石墨層結構,由實驗結果可以發現,當中間層材料為鉻與鈦時,奈米碳管的型態是最佳的,同時其表現出絕佳的場發射特性:當所施加的電場強度為6 V/μm時,其場發射電流密度分別可達到18.24與28.60 mA/cm2,遠超過應用上所需的數值。除此之外,碳管的場發射特性與外觀也會受到製程條件的影響,如反應氣體流量。藉由逐步改變與控制製程氣體的流量比例,我們得到一組最佳的成長參數,當製程氣體乙烯、氫氣與氮氣分別為125、10與1000 sccm時,奈米碳管具有最好的電性表現:。實驗結果也說明場發射特性與碳管的結晶性有相當程度的關係,隨碳管結晶性增加其場發射電流的穩定性也跟著增加。同時,碳管成長的活化能圖說明多層結構催化金屬具有較低的成長活化能,因此相較於其他催化金屬可以有效於低溫下催化碳管成長。
接下來,為有效改善電子束發散的現象,我們提出一基於低溫成長奈米碳管的自聚焦場發射元件,此一元件結構不需要額外的聚焦閘極而是採用將電極設計成一雙條狀電極且平行於場發射區域旁,不同於傳統元件結構具有被閘極包圍的場發射區域,自聚焦閘極結構因為條狀電極只鄰近單一邊的碳管,因此會造成異於傳統的非對稱的場發射區,結合此兩個非對稱場發射區域,場發射電子將於陽極板上形成一重疊的顯示區塊。從實驗結果來看,此一新穎閘極結構可以有效控制電子束軌跡且於陽極板上形成較小的發光區。模擬結果說明相較於傳統沒有聚焦結構的元件,當採用自聚焦閘極結構時陽極板上的場發射區域可由622微米縮小至232微米,同時實際螢光版上的發亮區域也顯示出相同的實驗結果,因此證明自對焦閘極結構可簡單且有效地控制電子束於陽極板上的大小。
最後,我們提出兩種形成次微米間距的方法並將其應用於製作具有低超作電壓的薄膜側向場發射子。元件可藉由薄膜沈積與濕式蝕刻完成,且電極間距可由蝕刻時間來控制,次微米間距形成於射極與集極間,當其間距為200奈米時,元件的啟始場發射電壓可以降低到48伏特。此外,為了進一步更可靠地製作此一次微米間距,我們提出一類平面側向場發射元件結構,此元件的電極間距可以藉由薄膜的厚度來調變,不同的膜厚將形成不同的間距大小。另外,經由一形成製程改變場發射子的表面型態,形成較高的表面粗糙度,元件的場發射特性可明顯的改善。當控制電極間距此一膜層的厚度為200奈米時,經過形成製程處理的元件,其場發射啟始電壓值可降低到9伏特。
In this thesis, low-temperature synthesis processes of emitter materials and devices as well as their field emission characteristics were investigated. For their application in field emission displays, carbon nanotubes (CNTs) should be employed uniformly on glass substrates in order to reduce the manufacture cost. Thermal chemical vapor deposition (t-CVD) had the merits of simplicity and cost efficiency in fabrication and large scalability as compared with other techniques. Therefore, it seemed to be a potential method for synthesizing nanotubes on glass substrates. Multilayer catalysts utilized in thermal CVD systems showed a remarkable catalytic ability for growth of CNTs at low temperatures. The multilayer catalysts were composed of supporting layer, interlayer, and catalytic metal. A supporting layer had the functionality in uniformly distribution of catalytic nanoparticles, meanwhile preventing their agglomeration. Besides improving the uniformity of catalytic particles, interlayers were able to enhance the precipitation of carbon atoms, thus resulting in the formation of graphite sheets. According to the results of experiment, while the interlayers were chromium (Cr) and titanium (Ti), carbon nanotubes showed the better morphologies and field emission performances: field emission current density of 18.24 and 28.60 mA/cm2 for Cr and Ti, respectively, at the electric field of 6 V/μm. Moreover, field emission characteristics of nanotubes can be improved by optimizing the synthesis conditions, i.e. reaction gas flow rates. According to the results of experiments, an optimal synthesis condition formed of reaction gases was 125, 10, and 1000 sccm for C2H4, H2, and N2, respectively. The morphology and field emission performance also showed a significant relationship corresponding to the crystallinity of nanotubed analyzed by Raman Spectra. A high stability of emission current was correlative with a better crystallinity. The growth activation energy calculated based on the dependence of nanotube length versus temperature revealed the fact that CNTs synthesized with a multilayer catalyst displayed a lower value than single or binary catalysts.
Next, a CNT-based device with a self-focusing gate structure was proposed to obviate the issue of electron beam divergence. Without additional focusing electrodes, the self-focusing gate structure employed a pair of gate electrodes parallel with the vicinity of emitters, which resulted in an asymmetric emission area as compared with the conventional gate structure. Therefore, electrons emitted from the emitters gave rise to an overlapping region on the anode plate so that a reduction of spot size had been achieved. According to the simulation results and luminescent images, this self-focusing gate structure had a well controllability on the trajectory of electrons, and therefore showed a smaller luminescent spot size than the conventional one. Because of the overlapping of electron beams, the luminescent spot sizes could be remarkably reduced to 232 μm in x direction as compared with 622 μm for the conventional gate structure which had a serious issue of beam divergence. As a result, the self-focusing gate structure manufactured with a simple process can produce well-focused electron beams for the application in FEDs.
Finally, two simple techniques of creating sub-micron gaps were proposed for thin film edge emitters in order to realize the feasibility in low-voltage operation and simplicity in fabrication. A lateral field emitter was manufactured by thin film deposition and wet etching processes. The spacing was determined by the lateral etching distance formed during etching stage. By controlling the duration of etching, the distances between emitters and collectors were well defined in submicron ranges. Device performance showed a low turn-on voltage of 48 V at an emission current of 100 nA as the emitter-collector spacing was 200 nm. In addition, for creation of submicron gaps in a more robust way, a novel quasi-planar thin film field emitter was proposed and fabricated utilizing the similar idea. The spacing between the emitter and collector could be well controlled via the thickness of Cr layers, which created submicron gap. A forming process caused an increased surface roughness of emitters and resulted in a higher field enhancement factor, which showed better field emission characteristics. The quasi-planar field emission diode with the first Cr layer of 200 showed a low turn-on voltage of 9 V at the current level of 100 nA.
Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgments (in Chinese) v
Contents vii
Table Lists xi
Figure Captions xii

Chapter 1 Introduction
1.1 Overview of Vacuum Microelectronics 1
1.2 Theory of Field Emission 3
1.3 Application of Vacuum Microelectronics 6
1.4 Field Emission Displays 7
1.4.1 Technologies of Field Emission Displays 9
1.4.1.1 Cathode Structures 10
1.4.1.1.1 Spindt-Type Field Emitters 10
1.4.1.1.2 Silicon Tip Field Emitters 11
1.4.1.1.3 MIM 11
1.4.1.1.4 BSD 12
1.4.1.1.5 Ferroelectric Emitters 13
1.4.1.1.6 Planar (Lateral) Field Emitters 13
�� SCE 14
�� Thin Film Edge Emitters 15
1.4.1.2 Cathode Materials 15
1.4.1.2.1 Diamond and DLC 15
1.4.1.2.2 Carbon Nanotubes 16
1.5 Motivation 18
1.6 Thesis Organization 20

Chapter 2 Investigation of Carbon Nanotubes Synthesized at Low Temperatures Using Multi-layered Catalytic Films
2.1 Introduction 22
2.2 Experimental Procedures 25
2.2.1 Sample Fabrication 25
2.2.2 Material Analysis 26
2.3 Morphologies and Field Emission Characteristics of CNTs 26
2.3.1 Effect of Supporting Layer 26
2.3.2 Effect of Interlayer 28
2.4 Growth Mechanism 31
2.5 Summary 32

Chapter 3 Improvements of Morphologies and Field Emission Characteristics for Carbon Nanotubes by Modifying the Gas Flow Rate Ratios
3.1 Introduction 34
3.2 Experimental Procedures 36
3.2.1 Sample Fabrication 36
3.2.2 Material Analysis and Field Emission Measurement 37
3.3 Morphologies and Field Emission Characteristics of CNTs 38
3.3.1 Effect of H2 38
3.3.2 Effect of N2 39
3.3.3 Effect of C2H4 40
3.3.4 Effect of Temperature and Activation Energy 40
3.4 Growth Mechanism 42
3.5 Summary 43

Chapter 4 Fabrication and Characterization of Carbon Nanotube Field Emission Devices with a Self-Focusing Gate Structure
4.1 Introduction 44
4.2 Concept of Beam Overlapping 46
4.3 Experimental Procedures 47
4.3.1 Simulation 47
�� Effect of Gate Width 47
�� Effect of Gate Spacing 48
4.3.2 Device Fabrication and Analysis 49
4.3.3 Device Performance 51
4.4 Summary 52

Chapter 5 Fabrication and Emission Characteristics of Chromium Thin Film Edge Emitters
5.1 Introduction 54
5.2 Planar Edge Field Emitter 56
5.2.1 Sample Fabrication and Analysis 56
5.2.2 Field Emission Characteristics 57
5.3 Quasi-Planar Edge Field Emitters 58
5.3.1 Sample Fabrication and Analysis 58
5.3.2 Field Emission Characteristics 59
5.4 Summary 60

Chapter 6 Summary and Conclusions 62

Chapter 7 Future Prospects 66

References 68
Tables 87
Figures 94
Vita 154
Publication Lists 155
Chapter 1
[1.1] R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Field,” Proc. R. Soc. London Ser. A, Vol. 119A, pp. 173-175, 1928.
[1.2] C. A. Spindt, “A Thin-Film Field-Emission Cathode,” J. Appl. Phys., Vol. 39, pp. 3504-3505, 1968.
[1.3] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. Rev., Vol. 74, pp. 230-231, 1948.
[1.4] R. N. Noyce, “Semiconductor Device-and-Lead Structure, ” US Patent 2,981,877, 1959.
[1.5] J. S. Kilby, “Invention of the Integrated Citcuit,” IEEE Trans. Electron. Dev., Vol. ED-23, No. 7, pp. 684-654, 1976.
[1.6] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John-Wiley & Sons publisher, New York, 648, 1991.
[1.7] R. H. Fowler and L. W. Nordhiem, “Electron Emission in Intense Field,” Proc. R. Soc. London Ser. A, Vol. 119A, pp. 173-175, 1928.
[1.8] K. L. Jensen, “Electron Emission Theory and its Application: Fowler-Nordhiem Equation and Beyond,” J. Vac. Sci. Technol. B, Vol. 21, 1528-1544, 2003.
[1.9] R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected Value of Fowler-Nordhiem Field Emission Function v(y) and s(y),” Phys. Rev., Vol. 90, p.515, 1953.
[1.10] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John-Wiley & Sons punlisher, New York, 648, 1991.
[1.11] P. Vaudaine and R. Myer, “Microtips Fluorescent Display,” International Electron Devices Meeting, pp. 197-200, 1991.
[1.12] C. Curtin, “The Field Emission Display: A New Flat Panel Technology,” Proceedings of the International Display Research Conference, SID, pp. 12-15, 1991.
[1.13] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerburg, “Field-emitter Array to Vacuum Fluorescent Display,” IEEE Trans. Electron. Dev., Vol. 36, No. 1, pp. 225-228, 1989.
[1.14] D. A. Cathey. Jr., “Field Emission Displays,” International Symposium on VLSI Technology Systems, and Applications, Proceedings of Technical Papers, Taiwan, pp. 131-136, 1995.
[1.15] “Pixel Tech to produce color FEDs” Nikkei Electronics ASIA, p. 42, Nov., 1995.
[1.16] H. G. Kosmahl, “A Wide-bandwith High-gain Small Size Distributed Amplifier with Field Emission Triodes (FETRODE’s) for the 10 to 300 GHz Frequency Range,” IEEE trans. Electron. Dev., Vol. 36, No. 11, pp. 2728-2737, Nov. 1989.
[1.17] P. M. Lally, E. A. Nettesheim, Y. Goren, C. A. Spindt, and A. Rosengreen, “A 10 GHz Tuned Amplifier Based on the SRI Thin Film Field-Emission Cathode,” ternational Electron Devices Meeting, p.522, 1998.
[1.18] C. A. Spindt, C. E. Holland, A. Rosengreen, and I. Brodie, “Field-emitter-array Development for High Frequency Operation,” J. Vac. Sci. Technol. B, Vol. 11, pp. 468-473, 1993.
[1.19] C. A. Spindt, “Microfabricated Field-emission and Field-ionization Sources,” Surface Sci., Vol. 266, pp. 145-154, 1992.
[1.20] T. H. P. Chang, D. P. Kern, M. A. McCord, and L. P. Muray, “A Scanning Tunneling Microscope Controlled Field Emission Micro Probe System,” J. Vac. Sci. Tech. B, No. 9, pp. 438-443, 1991.
[1.21] H. H. Busta, J. E. Pogemiller, and B. J. Zimmerman, “The Field-Emtter Triode as a Displacement/Pressure Sensor,” J. Micromech. Microeng., Vol. 3, pp. 49-56, 1933.
[1.22] H. C. Lee and R. S. Huang. “A Novel Field Emission Array Pressure Sensor,” IEEE Transducers-International Solid-State Sensors and Actuators, Vol. 126, pp. 241-244, 1991.
[1.23] R. Meyer, A. Ghis, P. Rambaud, and F. Muller, “Microtips Fluorescent Display,” in Workshop Digest, Japan Display, p. 513, 1986.
[1.24] R. Meyer, “6'' diagonal microtips fluorescent display for TV applications,” Euro display 90, p. 189, 1993.
[1.25] H. S. Yoo, W. Y. Sung, S. J. Yoon, Y. H. Kim, and S. K. Joo, “Novel Triode-Type Field Emission Arrays and Appropriate Driving Method for Flat Lamp Using Carbon Nanofibers Grown by Plasma Enhanced Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 46, pp. 4381-4385, 2007.
[1.26] D. A. Buck and K. R. Shoulders, “An Approach to Microminiature Printed Systems,” Eastern Joint Computer Conference, pp. 55-59, 1959.
[1.27] K. R. Shoulders, “Microelectronics Using Electron Beam Activated Machining Technologies,” Advances in Computers, Vol. 2, pp. 135-293, 1961.
[1.28] M. E. Crost, K. Shoulders, and M. E. Zinn, “Thin Electron Tube with Electron Emitters at the Intersection of Crossed Conductors,” US Patent 3,500, 102, 1970.
[1.29] C. A. Spindt and K. R. Shoulders, “Research in Micro-size Field-Emission Tubes,” IEEE Conference on Tube Techniques, pp. 143-147, 1966.
[1.30] W. Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001.
[1.31] K. Betsui, “Fabrication and Characteristics of Si Field Emitter Arrays,” Tech. Dig. 4th Int. Vacuum Microelectronics Conf., Naghama, Japan, p.26-29, 1991.
[1.32] H. F. Gray, “Silicon Field Emitter Array Technology,” Proc. 29th Int. Field Emission Symp., Stockholm, Sweden, p. 111, 1982.
[1.33] G. J. Campisi, H. F. Gray, and R. F. Greene, “A Vacuum Field Effect Transistor Using Silicon Field Emitter Arrays,” IEDM Technical Digest, pp. 776-779, 1986.
[1.34] P. B. Marcus and T. T. Sheng, “The Oxidation of Shaped Silicon Surface,” J. Electrochem. Soc., Vol. 129, pp.1278-1282, 1982.
[1.35] C. A. Mead, “Operation of Tunnel-Emission Devices,” J. Appl. Phys., Vol. 32, pp.646-652, 1961.
[1.36] Y. Kumagai, K. Kawarada, and Y. Shibata, “Energy Distribution of Electrons Tunneling through a Metal-Insulator-Metal Sandwich Structure,” Jpn, J. Appl. Phys., Vol. 6, pp.280-296, 1966.
[1.37] J. G.. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., Vol. 34, pp.1793-1803, 1963.
[1.38] K. Ohta, J. Nishida, and T. Hayashi, “Electron Emission Pattern of Thin-Film Tunnel Cathode,” Jpn. J. Appl. Phys., Vol. 7, pp. 784-784, 1968.
[1.39] T. Kusunoki, M. Suzuki, S. Sasaki, T. Yaguchi, and T. Adia, “Fluctuation-Free Electron Emission from Non-Formed Metal-Insulator-Metal (MIM) Cathodes Fabricated by Low Current Anodic Oxidation,” Jpn. J. Appl. Phys., Vol. 32, pp.L1695-L1697, 1993.
[1.40] H. Adachi, “Emission Characteristics of Metal–insulator–metal Tunnel Cathodes,” J. Vac. Sci. Technol. B, Vol. 14, pp. 2093-2095, 1996.
[1.41] T. Komoda, X. Sheng, and N. Koshida, Mater Res Soc Symp Proc, vol. 509, p. 187, 1998.
[1.42] T. Komoda, X. Sheng, and N. Koshida, “Mechanism of efficient and stable surface-emitting cold cathode based on porous polycrystalline silicon films,” J. Vac Sci. Technol. B, Vol. 17, pp. 1076-1079, 1999.
[1.43] T. Komoda, Y. Honda, T. Hatai, Y. Watabe, T. Ichihara, K. Aizawa, Y. Kondo, and N. Koshida, “Efficient Quasi-Ballistic Cold Cathode Based on Porous Polysilicon Thin Film for Possible Application to Flat Panel Display,” IDW ‘99, Tech Digest, pp. 939-942, 1999.
[1.44] T. Ichihara, Y. Honda, K. Aizawa, T. Komoda, and N. Koshida, “Development of ballistic electron cold cathode by a low-temperature processing of polycrystalline silicon films,” J Crys Growth, Vol. 237–239, pp. 1915-1919, 2002.
[1.45] T. Ichihara, Y. Honda, T. Baba, Y. Takegawa, Y. Watabe, T. Hatai, K. Aizawa, T. Komoda, V. Vezin, and N. Koshida, “Improved Electron Emission Characteristics of BSD (Ballistic Electron Surface-Emitting Display) on a Glass Substrate Fabricated with Low Temperature Process,” IDW ‘02, Tech Digest, pp. 1033-1036, 2002.
[1.46] R. C. Miller and A. Savage, “Motion of 180° Domain Walls in Metal Electroded Barium Titanate Crystals as a Function of Electric Field and Sample Thickness,” J. Appl. Phys., Vol. 31, pp. 662-669, 1960.
[1.47] A. Koller and M. Beranek, “Einige neue Erkenntnisse über die Degradation von Titanaten im Zusammenhang mit der Exoemission,” Czech, J. Phys., Vol. 9, pp. 402-403, 1959.
[1.48] G.. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron Emission from Ferroelectrics,” J. Appl. Phys., Vol. 88, pp. 6109-6161, 2000.
[1.49] W. Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001.
[1.50] E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, and T. Nakagiri, “A 10-in. Surface-Conduction Electron-Emitter Display,” J. SID, Vol. 5, pp. 345-348, 1997.
[1.51] J. A. Oro and D. D. Ball, “Lateral field-emission devices with subtenth-micron emitter to anode spacing,” J. Vac. Sci. Technol. B, Vol. 11, pp. 464-467, 1993.
[1.52] Y. Gotoh, T. Ohtake, N. Fujita, K. Inoue, H. Tsuji, and J. Ishikawa, “Fabrication of lateral-type thin-film edge field emitters by focused ion beam technique,” J. Vac. Sci. Technol. B, Vol. 13, pp. 465-468, 1995.
[1.53] C. S. Lee and C. H. Han, “A novel sub-micron gap fabrication technology using chemical–mechanical polishing (CMP): application to lateral field emission device (FED),” Sens. Actuators A, Vol. 97-98, pp. 739-743, 2002.
[1.54] F. J. Himpsel, J. A. Knapp, J. A. van Vechten, and D. E. Eastman, “Quantum photoyield of diamond(111)—A stable negative-affinity emitter,” Phys. Rev. B, Vol. 20, pp. 624-627 ,1979.
[1.55] S. Lee, B. K. Ju, Y. H. Lee, D. Jeon, and M. H. Oh, “Fabrication and field emission study of gated diamondlike-carbon-coated silicon tips,” J. Vac. Sci. Technol. B, Vol. 15, p.425, 1997.
[1.56] K. L. Park, J. H. Moon, S. J. Chung, J. Jang, M. H. Oh, and W. I. Milne, “Deposition of N-type Diamond-like Carbon by Using the Layer-by-layer Technique and its Electron Emission Properties,” Appl. Phys. Lett., Vol. 70, pp. 1381-1383, 1997.
[1.57] F. Y. Chuang, C. Y. Sun, T. T. Chen, and I. N. Lin, “Local Electron Field Emission Characteristics of Pulsed Laser Deposited Diamond-like Carbon Films,” Appl. Phys. Lett., Vol. 69, pp. 3504-3506, 1996
[1.58] J. Robertson, “Recombination and Photoluminescence Mechanism in Hydrogenated Amorphous Carbon,” Phys. Rev. B, Vol. 53, pp.16302-16305, 1996.
[1.59] J. Rinstein, J. Schafer, and L. Ley, “Effective Correlation Energies for Defects in a-C:H from a Comparison of Photelectron Yield and Electron Spin Resonance Experiments,” Diam. Relat. Mater., Vol. 4, pp. 508-516, 1995.
[1.60] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[1.61] W. A. de Heer, A. Chateline, D. Ugrate, “A Carbon Nanotube Field-emission Electron Source,” Science, Vol. 270, pp. 1179-1180, 1995.
[1.62] K. A. Dean and B. R. Chalamala, “Current Saturation Mechanisms in Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 76, pp. 375-377, 2000.
[1.63] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large Current Density from Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 75, pp. 873-875, 1999.
[1.64] H. Zeng, L. Zhu, G. Hao, and R. Sheng, “Synthesis of various forms of carbon nanotubes by AC arc discharge,” Carbon, Vol. 36, pp. 259-261, 1998.
[1.65] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, “Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal,” Chem. Phys. Lett., Vol. 278, pp. 102-106, 1997.
[1.66] M. Su, B. Zheng, and J. Liu, “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity,” Chem. Phys. Lett., Vol. 322, pp. 321-326, 2000.

Chapter 2
[2.1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[2.2] W. A. de Heer, A. Châtelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source,” Science, Vol. 270, pp. 1179-1180, 1995.
[2.3] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, p. 512, 1999.
[2.4] P. G. Collins and A. Zettl, “A simple and robust electron beam source from carbon nanotubes,” Appl. Phys. Lett., Vol. 69, pp. 1969-1971, 1996.
[2.5] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields,” Appl. Phys. Lett., Vol. 70, pp. 3308-3310, 1997.
[2.6] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Very Large Current Density from Carbon Nanotube Field Emitters,” IEDM Technical Digest, pp. 705-708, 1999.
[2.7] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett., Vol. 75, pp. 3129-3131, 1999.
[2.8] J. Yotani, S. Uemura, T. Nagasako, H. Kurachi, H. Yamada, T. Ezaki, T. Maesoba, T. Nakao, M. Ito, Y. Saito, and M. Yumura, “CNT-FED for Character Displays,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 828-831, 2004.
[2.9] K. A. Dean, B. F. Coll, E. Howard, S. V. Johnson, M. R. Johnson, H. Li, D. C. Jordan, L. Hilt Tisinger, M. Hupp, S. G. Thomas, E. Weisbrod, S. M. Smith, S. R. Young, J. Baker, D. Weston, W. J. Dauksher, Y. Wei, and J. E. Jaskie, “Color Field Emission Display for Large Area HDTV,” SID Int. Symp. Dig. Tech. Pap., Vol. 36, pp. 1936-1939, 2005.
[2.10] R. L. Fink, L. H. Thuesen, V. Ginsberg, D. S. Mao, Y. J. Li, and Z. Yaniv, “Twenty-Five Inch Diagonal Carbon Nanotube Field Emission Display,” SID Int. Symp. Dig. Tech. Pap., Vol. 37, pp. 1748-1751, 2006.
[2.11] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett., Vol. 75, pp. 3129-3131, 1999.
[2.12] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, and J. M. Kim, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett., Vol. 78, pp. 1547-1549, 2001.
[2.13] S. I. Honda, K. Y. Lee, K. Aoki, T. Hirao, K. Oura, and M. Katayama, “Low-Temperature Synthesis of Aligned Carbon Nanofibers on Glass Substrates by Inductively Coupled Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 45, pp. 5326-5328, 2006.
[2.14] Y. S. Woo, I. T. Han, Y. J. Park, H. J. Kim, J. E. Jung, N. S. Lee, D. Y. Jeon, and J. M. Kim, “Effect of Ion Bombardment on Microstructures of Carbon Nanotubes Grown by Electron Cyclotron Resonance Chemical Vapor Deposition at Low Temperatures,” Jpn. J. Appl. Phys., Vol. 42, pp. 1410-1413, 2003.
[2.15] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, Vol. 282, pp. 1105-1107, 1998.
[2.16] Y. J. Park, I. T. Han, H. J. Kim, Y. S. Woo, N. S. Lee, Y. W. Jin, J. E. Jung, J. H. Choi, D. S. Jung, C. Y. Park, and J. M. Kim, “Effect of Catalytic Layer Thickness on Growth and Field Emission Characteristics of Carbon Nanotubes Synthesized at Low Temperatures Using Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 41, pp. 4679-4685, 2002.
[2.17] I. T. Han, H. J. Kim, Y. J. Park, Y. W. Jin, J. E. Jung, J. M. Kim, B. K. Kim, N. S. Lee, and S. K. Kim, “Synthesis of Highly Crystalline Multiwalled Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Buffer Gases,” Jpn. J. Appl. Phys., Vol. 46, pp. 3631-3635, 2004.
[2.18] S. Hofmann, G. Csa´nyi, A. C. Ferrari, M. C. Payne, and J. Robertson, “Surface Diffusion: The Low Activation Energy Path for Nanotube Growth,” Phys. Rev. Lett., Vol. 95, p. 036101, 2005.
[2.19] S. Hofmann, C. Ducati, J. Robertson and, B. Kleinsorge, “Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 135-137, 2003.
[2.20] R. T. L. Baker and M. A. Barber: in Chemistry and Physics of Carbon, ed. P. L. Walker and P. A. Thrower (Dekker, New York, 1978), Vol. 14, p. 83.
[2.21] C. J. Lee, J. Park, S. Han, and J. Ihm, “Growth and field emission of carbon nanotubes on sodalime glass at 550°C using thermal chemical vapor deposition,” Chem. Phys. Lett., Vol. 337, pp. 398-403, 2001.
[2.22] C. J. Lee, T. J. Lee, and J. Park, “Carbon nanofibers grown on sodalime glass at 500°C using thermal chemical vapor deposition,” Chem. Phys. Lett., Vol. 340, pp. 413-418, 2001.
[2.23] G. Takeda, L. Pan, S. Akita, and Y. Nakayama, “Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays,” Jpn. J. Appl. Phys., Vol. 44, pp. 5642-5645, 2005.
[2.24] Y. Ishikawa and H. Jinbo, “Synthesis of Multiwalled Carbon Nanotubes at Temperatures below 300℃ by Hot-Filament Assisted Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 44, pp. L394-L397, 2005.
[2.25] K. Kamada, T. Ikuno, S. Takahashi, T. Oyama, T. Yamamoto, M. Kamizono, S. Ohkura, S. Honda, M. Katayama, T. Hirao, and K. Oura, “Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst,” Appl. Surf. Sci., Vol. 212-213, pp. 383-387, 2003.
[2.26] A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Rres, “In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition,” Appl. Phys. A, Vol. 81, pp. 223-240, 2003.
[2.27] L. Jodin, A. C. Dupuis, E. Rouviere, and P. Reiss, “Influence of the Catalyst Type on the Growth of Carbon Nanotubes via Methane Chemical Vapor Deposition,” J. Phys. Chem. B, Vol. 110, pp. 7328-7333, 2006.
[2.28] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth,” Chem. Phys. Lett., Vol. 348, pp. 368-374, 2001.
[2.29] H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, and D. H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition,” Chem. Phys. Lett., Vol. 374, pp. 222-228, 2003.
[2.30] G. A. J. Amaratunga and S. R. P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes,” Appl. Phys. Lett., Vol. 68, pp. 2529-2531, 1996.
[2.31] K. Y. Lee, S. Honda, M. Katayama, T. Miyake, K. Himuro, K. Oura, J. G. Lee, H. Mori, and T. Hirao, “Vertically aligned growth of carbon nanotubes with long length and high density,” J. Vac. Sci. Technol. B, Vol. 23, pp. 1450-1453, 2005.
[2.32] S. Satio, A. Kawabata, D. Kondo, M. Nihei, and Y. Awano, “Carbon nanotube growth from titanium–cobalt bimetallic particles as a catalyst,” Chem. Phys. Lett., Vol. 402, pp. 149-154, 2005.
[2.33] G. Radhakrishnan, P. M. Adams, and D. M. Speckman, “Low temperature pulsed laser deposition of titanium carbide on bearing steels,” Thin Solid Films, Vol. 358, pp. 131-138, 2000.
[2.34] Y. Y. Chang, S. J. Yang, and D. Y. Wang, “Structural and mechanical properties of Cr–C–O thin films synthesized by a cathodic-arc deposition process,” Surface & Coatings Technology, Vol. 202, pp. 941-945, 2007.

Chapter 3
[3.1] C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, “The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition,” J. Appl. Phys., Vol. 95, pp. 6387-6391, 2004.
[3.2] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, p. 512, 1999.
[3.3] C. P. Deck and K. Vecchio, “Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams,” Carbon, Vol. 44, pp. 267-275, 2006.
[3.4] Y. M. Shyu, F. C. N. Hong, “The effects of pre-treatment and catalyst composition on growth of carbon nanofibers at low temperature,” Diamond Relat. Mater., Vol. 10, pp. 1241-1245, 2001.
[3.5] Y. J. Park, I. T. Han, H. J. Kim, Y. S. Woo, N. S. Lee, Y. W. Jin, J. E. Jung, J. H. Choi, D. S. Jung, C. Y. Park, and J. M. Kim, “Effect of Catalytic Layer Thickness on Growth and Field Emission Characteristics of Carbon Nanotubes Synthesized at Low Temperatures Using Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 41, pp. 4679-4685, 2002.
[3.6] M. P. Siegal, D. L. Overmyer, and F. H. Kaatz, “Controlling the site density of multiwall carbon nanotubes via growth conditions,” Appl. Phys. Lett., Vol. 84, pp. 5156-5158, 2004.
[3.7] I. T. Han, H. J. Kim, Y. J. Park, Y. W. Jin, J. E. Jung, J. M. Kim, B. K. Kim, N. S. Lee, and S. K. Kim, “Synthesis of Highly Crystalline Multiwalled Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Buffer Gases,” Jpn. J. Appl. Phys., Vol. 43, pp. 3631-3635, 2004.
[3.8] G. Y. Xiong, Y. Suda, D. Z. Wang, J. Y. Huang, and Z. F. Ren, “Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition,” Nanotechnology, Vol. 16, pp. 532-535, 2005.
[3.9] K. Kuwana, H. Endo, K. Saito, D. Qian, R. Andrews, and E. A. Grulke, “Catalyst deactivation in CVD synthesis of carbon nanotubes,” Carbon, Vol. 43, pp. 253-260, 2005.
[3.10] M. Sveningsson, R. E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, “Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films,” Appl. Phys. A, Vol. 73, pp. 409-418, 2001.
[3.11] C. Lan, P. B. Amama, T. S. Fisher, and R. G. Reifenberger, “Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes,” Appl. Phys. Lett., Vol. 91, p. 093105, 2007.
[3.12] G. F. Malgas, C. J. Arendse, N. P. Cele, and F. R. Cummings, “Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD,” J Mater. Sci., Vol. 43, pp. 1020-1025, 2008.
[3.13] S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, “Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 135-137, 2003.
[3.14] R. T. L. Baker and M. A. Barber: in Chemistry and Physics of Carbon, ed. P. L. Walker and P. A. Thrower (Dekker, New York, 1978), Vol. 14, p. 83.
[3.15] K. K. Nanda, S. N. Sahu, and S. N. Behera, “Liquid-drop model for the size-dependent melting of low-dimensional systems,” Phys. Rev. A, Vol. 66, p. 013208, 2002.

Chapter 4
[4.1] Q. H. Wang, M. Yan, and R. P. H. Chang, “Flat panel display prototype using gated carbon nanotube field emitters,” Appl. Phys. Lett., Vol. 78, pp. 1294-1296, 2001.
[4.2] K. J. Chen, W. K. Hong, C. P. Lin, K. H. Chen, L. C. Chen, and H. C. Cheng, “Low Turn-On Voltage Field Emission Triodes With Selective Growth of Carbon Nanotubes,” IEEE Electron Device Lett., Vol. 22, pp. 516-518, 2001.
[4.3] H. C. Cheng, K. J. Chen, W. K. Hong, F. G. Tantair, C. P. Lin, K. H. Chen, and L. C. Chen, “Fabrication and Characterization of Low Turn-On Voltage Carbon Nanotube Field Emission Triodes,” Electronchem. Solid-State Lett., Vol. 4, pp. H15-H17, 2001.
[4.4] Y. S. Choi, J. H. Park, W. B. Choi, C. J. Lee, S. H. Jo, C. G. Lee, J. H. You, J. E. Jung, N. S. Lee, and J. M. Kim, “An under-gate triode structure field emission display with carbon nanotube emitters,” Diamond Relat. Mater., Vol. 10, pp. 1705-1708, 2001.
[4.5] J. E. Jung, Y. W. Jin, J. H. Choi, Y. J. Park, T. Y. Ko, D. S. Chung, J. W. Kim, J.E. Jang, S. N. Cha, W. K. Yi, S. H. Cho, M. J. Yoon, C. G. Lee, J. H. You, N. S. Lee, J. B. Yoo, and J. M. Kim, “Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays,” Physica B, Vol. 323, pp. 71-77, 2002.
[4.6] Y. S. Choi, J. H. Kang, H. Y. Kim, B. G. Lee, C. G. Lee, S. K. Kang, Y. W. Jin, J. W. Kim, J. E. Jung, and J. M. Kim, “A simple structure and fabrication of carbon-nanotube field emission display,” Appl. Surf. Sci., Vol. 221, pp. 370-374, 2004.
[4.7] D. Y. Kim, J. B. Yoo, I. T. Han, H. J. Kim, H. J. Kim, J. E. Jung, Y. W. Jin, J. M. Kim, and K. H. Chin, “The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure,” Diamond Relat. Mater., Vol. 14, pp. 2084-2088, 2005.
[4.8] Y. C. Choi, K. S. Jeong, I. T. Han, H. J. Kim, Y. W. Jin, J. M. Kim, B. G. Lee, J. H. Park, and D. H. Choe, “Double-gated field emitter array with carbon nanotubes grown by chemical vapor deposition,” Appl. Phys. Lett., Vol. 88, p. 263504, 2006.
[4.9] C. M. Tang, T. A. Swyden, and A. C. Ting, “Planar lenses for field-emitter arrays,” J. Vac. Sci. Technol. B, Vol. 13, pp. 571-575, 1995.
[4.10] L. Dvorson and A. I. Akinwande, “Double-gated Spindt emitters with stacked focusing electrode,” J. Vac. Sci. Technol. B, Vol. 20, pp. 53-59, 2002.
[4.11] C. Xie, Y. Wei, and B. G. Smith, “A Novel Approach for Focusing Electron Beams Using Low-Cost Ceramic Grid,” IEEE Trans. Electron Devices, Vol. 49, pp. 324-328, 2002.
[4.12] Wei Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001.
[4.13] N. Tsukahara, H. Nakano, H. Murakami, M. Hirakawa, T. Kojima, K. Kageyama, and T. Sasaki, “A 4.8 inch GNF-FED with A Mesh Gate Structure,” SID Int. Symp. Dig. Tech. Pap., Vol. 37, pp. 660-662, 2006.
[4.14] Y. Ishizuka, T. Oyaizu, T. Oguchi, H. Hoshi, and E. Yamaguchi, “High-brightness, High-resolution, High-contrast, and Wide-gamut Features of Surface-conduction Electron-emitter Displays,” IDW ‘05, Tech Digest, pp. 1655-1658, 2005.
[4.15] J. H. Choi, A. R. Zoulkarneev, Y. W. Jin, Y. J. Park, D. S. Chung, B. K. Song, I. T. Han, H. W. Lee, S. H. Park, H. S. Kang, H. J. Kim, J. E. Jung, and J. M. Kim, “Carbon nanotube field emitter arrays having an electron beam focusing structure,” Appl. Phys. Lett., Vol. 84, pp. 1022-1024, 2004.
[4.16] J. H. Choi, A. R. Zoulkarneev, Y. J. Park, D. S, Chung, B. K. Song, H. S. Kang, C. W. Baik, I. T. Han, H. J. Kim, M. J. Shin, H. J. Kim, T. S. Oh, Y. W. Jin, J. M. Kim, and N. Lee, “Optimization of Electron Beam Focusing for Gated Carbon Nanotube Field Emitter Arrays,” IEEE Trans. Electron Devices, Vol. 52, pp. 2584-2590, 2005.
[4.17] M. S. Dresselhaus and P. C. Eklund, “Phonons in carbon nanotubes,” Adv. Phys., Vol. 52, pp. 705-814, 2000.

Chapter 5
[5.1] H. F. Gray, G. J. Campisi, and R. F. Greene, “A Vacuum Field Effect Transistor Using Silicon Field Emitter Arrays,” IEDM Technical Digest, pp. 776-779, 1986.
[5.2] I. Brodie and C. A. Spindt, “Vacuum microelectronics,” Adv. Electron. Electron Phys., Vol. 83, pp. 1-106, 1992.
[5.3] H. H. Busta, “Vacuum microelectronics-1992,” J. Micromech. Microeng, Vol. 2, pp. 43-74, 1992.
[5.4] J. P. Spallas and N. C. MacDonald, “Fabrication and Operation of Silicon Field Emission Cathode Arrays,” IEDM Technical Digest, pp. 209-212, 1991.
[5.5] T. Maruyama, S. Katoh, and T. Kobayashi, “Design and Experiments on Improved Cathode Configuration for Diamond Planar Field Emission Display Elements,” Jpn. J. Appl. Phys., Vol. 42, pp. 274-279, 2003.
[5.6] J. A. Oro and D. D. Ball, “Lateral field-emission devices with subtenth-micron emitter to anode spacing,” J. Vac. Sci. Technol. B, Vol. 11, pp. 464-467, 1993.
[5.7] Y. Gotoh, K. Inoue, T. Ohtake, H. Ueda, Y. Hishida, H. Tsuji, and J. Ishikawa, “Application of Focused Ion Beam Techniques to the Fabrication of Lateral-Type Thin-Film Edge Field Emitters,” Jpn. J. Appl. Phys., Vol. 33, pp. L63-L66, 1994.
[5.8] Y. Gotoh, T. Ohtake, N. Fujita, K. Inoue, H. Tsuji, and J. Ishikawa, “Fabrication of lateral-type thin-film edge field emitters by focused ion beam technique,” J. Vac. Sci. Technol. B, Vol. 13, pp. 465-468, 1995.
[5.9] C. S. Lee and C. H. Han, “A novel sub-micron gap fabrication technology using chemical–mechanical polishing (CMP): application to lateral field emission device (FED),” Sens. Actuators A, Vol. 97-98, pp. 739-743, 2002.
[5.10] W. J. Zang, J. H. Lee, J. H. Lee, Y. H. Bae, C. A. Choi, and S. H. Hahm, “Lateral field emission diode with wedge-type tip and nanogap on separation by implantation of oxygen silicon,” J. Vac. Sci. Technol. B, Vol. 18, pp. 1006-1008, 2000.
[5.11] T. Oguchi, E. Yamaguchi, K. Sasaki, K. Suzuki, S. Uzawa, and K. Hatanaka, “A 36-inch Surface-conduction Electron-emitter Display (SED),” SID Int. Symp. Dig. Tech. Pap., Vol. 36, pp. 1929-1931, 2005.
[5.12] K. M. Lee, H. J. Han, S. Choi, K. H. Park, S. G. Oh, S. Lee, and K. H. Koh, “Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films,” J. Vac. Sci. Technol. B, Vol. 21, pp. 623-626, 2003.
[5.13] X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, and A. C. M. Yang, “Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma,” J. Vac. Sci. Technol. B, Vol. 18, pp. 1840-1846, 2000.
[5.14] X. W. Liu, L. H. Chan, W. J. Hsieh, J. H. Lin, and H. C. Shih, “The effect of argon on the electron field emission properties of a-C:N thin films,” Carbon, Vol. 41, pp. 1143-1148, 2003.
[5.15] M. S. Lim, C. M. Park, and M. K. Han, “Investigation of field emission characteristics for Si-base materials: Titanium silicide, poly-Si, and single crystal Si,” J. Vac. Sci. Technol. B, Vol. 17, pp. 635-637, 1999.
[5.16] W. P. Kang, J. L. Davidson, A. Wisitsora-at, M. Howell, A. Jamaludin, Y. M. Wong, K. L. Soh, and D. V. Kerns, “Fabrication and field emission characteristics of lateral diamond field emitter,” J. Vac. Sci. Technol. B, Vol. 21, pp. 593-596, 2003.
[5.17] J. Y. Luo, K. S. Liu, J. S. Lee, I. N. Lin, and H. F. Cheng, “The influence of film-to-substrate characteristics on the electron field emission behavior of the diamond films,” Diamond Relat. Mater., Vol. 7, pp. 704-710, 1998.
[5.18] A. Hart, B. S. Satyanarayana, W. I. Milne, and J. Robertson, “Field emission from tetrahedral amorphous carbon as a function of surface treatment and substrate material,” Appl. Phys. Lett., Vol. 74, pp. 1594-1596, 1999.
[5.19] N. S. Xu, J. Chen, and S. Z. Deng, “Physical origin of nonlinearity in the Fowler–Nordheim plot of field-induced emission from amorphous diamond films: Thermionic emission to field emission,” Appl. Phys. Lett., Vol. 76, pp. 2463-2465, 2000.
[5.20] J. B. Cui, K. B. Teo, J. T. H. Tsai, J. Robertson, and W. I. Milne, “The role of dc current limitations in Fowler–Nordheim electron emission from carbon films,” Appl. Phys. Lett., Vol. 77, pp. 1831-1833, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊