|
Chapter 1 [1.1] R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Field,” Proc. R. Soc. London Ser. A, Vol. 119A, pp. 173-175, 1928. [1.2] C. A. Spindt, “A Thin-Film Field-Emission Cathode,” J. Appl. Phys., Vol. 39, pp. 3504-3505, 1968. [1.3] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. Rev., Vol. 74, pp. 230-231, 1948. [1.4] R. N. Noyce, “Semiconductor Device-and-Lead Structure, ” US Patent 2,981,877, 1959. [1.5] J. S. Kilby, “Invention of the Integrated Citcuit,” IEEE Trans. Electron. Dev., Vol. ED-23, No. 7, pp. 684-654, 1976. [1.6] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John-Wiley & Sons publisher, New York, 648, 1991. [1.7] R. H. Fowler and L. W. Nordhiem, “Electron Emission in Intense Field,” Proc. R. Soc. London Ser. A, Vol. 119A, pp. 173-175, 1928. [1.8] K. L. Jensen, “Electron Emission Theory and its Application: Fowler-Nordhiem Equation and Beyond,” J. Vac. Sci. Technol. B, Vol. 21, 1528-1544, 2003. [1.9] R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected Value of Fowler-Nordhiem Field Emission Function v(y) and s(y),” Phys. Rev., Vol. 90, p.515, 1953. [1.10] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., John-Wiley & Sons punlisher, New York, 648, 1991. [1.11] P. Vaudaine and R. Myer, “Microtips Fluorescent Display,” International Electron Devices Meeting, pp. 197-200, 1991. [1.12] C. Curtin, “The Field Emission Display: A New Flat Panel Technology,” Proceedings of the International Display Research Conference, SID, pp. 12-15, 1991. [1.13] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerburg, “Field-emitter Array to Vacuum Fluorescent Display,” IEEE Trans. Electron. Dev., Vol. 36, No. 1, pp. 225-228, 1989. [1.14] D. A. Cathey. Jr., “Field Emission Displays,” International Symposium on VLSI Technology Systems, and Applications, Proceedings of Technical Papers, Taiwan, pp. 131-136, 1995. [1.15] “Pixel Tech to produce color FEDs” Nikkei Electronics ASIA, p. 42, Nov., 1995. [1.16] H. G. Kosmahl, “A Wide-bandwith High-gain Small Size Distributed Amplifier with Field Emission Triodes (FETRODE’s) for the 10 to 300 GHz Frequency Range,” IEEE trans. Electron. Dev., Vol. 36, No. 11, pp. 2728-2737, Nov. 1989. [1.17] P. M. Lally, E. A. Nettesheim, Y. Goren, C. A. Spindt, and A. Rosengreen, “A 10 GHz Tuned Amplifier Based on the SRI Thin Film Field-Emission Cathode,” ternational Electron Devices Meeting, p.522, 1998. [1.18] C. A. Spindt, C. E. Holland, A. Rosengreen, and I. Brodie, “Field-emitter-array Development for High Frequency Operation,” J. Vac. Sci. Technol. B, Vol. 11, pp. 468-473, 1993. [1.19] C. A. Spindt, “Microfabricated Field-emission and Field-ionization Sources,” Surface Sci., Vol. 266, pp. 145-154, 1992. [1.20] T. H. P. Chang, D. P. Kern, M. A. McCord, and L. P. Muray, “A Scanning Tunneling Microscope Controlled Field Emission Micro Probe System,” J. Vac. Sci. Tech. B, No. 9, pp. 438-443, 1991. [1.21] H. H. Busta, J. E. Pogemiller, and B. J. Zimmerman, “The Field-Emtter Triode as a Displacement/Pressure Sensor,” J. Micromech. Microeng., Vol. 3, pp. 49-56, 1933. [1.22] H. C. Lee and R. S. Huang. “A Novel Field Emission Array Pressure Sensor,” IEEE Transducers-International Solid-State Sensors and Actuators, Vol. 126, pp. 241-244, 1991. [1.23] R. Meyer, A. Ghis, P. Rambaud, and F. Muller, “Microtips Fluorescent Display,” in Workshop Digest, Japan Display, p. 513, 1986. [1.24] R. Meyer, “6'' diagonal microtips fluorescent display for TV applications,” Euro display 90, p. 189, 1993. [1.25] H. S. Yoo, W. Y. Sung, S. J. Yoon, Y. H. Kim, and S. K. Joo, “Novel Triode-Type Field Emission Arrays and Appropriate Driving Method for Flat Lamp Using Carbon Nanofibers Grown by Plasma Enhanced Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 46, pp. 4381-4385, 2007. [1.26] D. A. Buck and K. R. Shoulders, “An Approach to Microminiature Printed Systems,” Eastern Joint Computer Conference, pp. 55-59, 1959. [1.27] K. R. Shoulders, “Microelectronics Using Electron Beam Activated Machining Technologies,” Advances in Computers, Vol. 2, pp. 135-293, 1961. [1.28] M. E. Crost, K. Shoulders, and M. E. Zinn, “Thin Electron Tube with Electron Emitters at the Intersection of Crossed Conductors,” US Patent 3,500, 102, 1970. [1.29] C. A. Spindt and K. R. Shoulders, “Research in Micro-size Field-Emission Tubes,” IEEE Conference on Tube Techniques, pp. 143-147, 1966. [1.30] W. Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001. [1.31] K. Betsui, “Fabrication and Characteristics of Si Field Emitter Arrays,” Tech. Dig. 4th Int. Vacuum Microelectronics Conf., Naghama, Japan, p.26-29, 1991. [1.32] H. F. Gray, “Silicon Field Emitter Array Technology,” Proc. 29th Int. Field Emission Symp., Stockholm, Sweden, p. 111, 1982. [1.33] G. J. Campisi, H. F. Gray, and R. F. Greene, “A Vacuum Field Effect Transistor Using Silicon Field Emitter Arrays,” IEDM Technical Digest, pp. 776-779, 1986. [1.34] P. B. Marcus and T. T. Sheng, “The Oxidation of Shaped Silicon Surface,” J. Electrochem. Soc., Vol. 129, pp.1278-1282, 1982. [1.35] C. A. Mead, “Operation of Tunnel-Emission Devices,” J. Appl. Phys., Vol. 32, pp.646-652, 1961. [1.36] Y. Kumagai, K. Kawarada, and Y. Shibata, “Energy Distribution of Electrons Tunneling through a Metal-Insulator-Metal Sandwich Structure,” Jpn, J. Appl. Phys., Vol. 6, pp.280-296, 1966. [1.37] J. G.. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., Vol. 34, pp.1793-1803, 1963. [1.38] K. Ohta, J. Nishida, and T. Hayashi, “Electron Emission Pattern of Thin-Film Tunnel Cathode,” Jpn. J. Appl. Phys., Vol. 7, pp. 784-784, 1968. [1.39] T. Kusunoki, M. Suzuki, S. Sasaki, T. Yaguchi, and T. Adia, “Fluctuation-Free Electron Emission from Non-Formed Metal-Insulator-Metal (MIM) Cathodes Fabricated by Low Current Anodic Oxidation,” Jpn. J. Appl. Phys., Vol. 32, pp.L1695-L1697, 1993. [1.40] H. Adachi, “Emission Characteristics of Metal–insulator–metal Tunnel Cathodes,” J. Vac. Sci. Technol. B, Vol. 14, pp. 2093-2095, 1996. [1.41] T. Komoda, X. Sheng, and N. Koshida, Mater Res Soc Symp Proc, vol. 509, p. 187, 1998. [1.42] T. Komoda, X. Sheng, and N. Koshida, “Mechanism of efficient and stable surface-emitting cold cathode based on porous polycrystalline silicon films,” J. Vac Sci. Technol. B, Vol. 17, pp. 1076-1079, 1999. [1.43] T. Komoda, Y. Honda, T. Hatai, Y. Watabe, T. Ichihara, K. Aizawa, Y. Kondo, and N. Koshida, “Efficient Quasi-Ballistic Cold Cathode Based on Porous Polysilicon Thin Film for Possible Application to Flat Panel Display,” IDW ‘99, Tech Digest, pp. 939-942, 1999. [1.44] T. Ichihara, Y. Honda, K. Aizawa, T. Komoda, and N. Koshida, “Development of ballistic electron cold cathode by a low-temperature processing of polycrystalline silicon films,” J Crys Growth, Vol. 237–239, pp. 1915-1919, 2002. [1.45] T. Ichihara, Y. Honda, T. Baba, Y. Takegawa, Y. Watabe, T. Hatai, K. Aizawa, T. Komoda, V. Vezin, and N. Koshida, “Improved Electron Emission Characteristics of BSD (Ballistic Electron Surface-Emitting Display) on a Glass Substrate Fabricated with Low Temperature Process,” IDW ‘02, Tech Digest, pp. 1033-1036, 2002. [1.46] R. C. Miller and A. Savage, “Motion of 180° Domain Walls in Metal Electroded Barium Titanate Crystals as a Function of Electric Field and Sample Thickness,” J. Appl. Phys., Vol. 31, pp. 662-669, 1960. [1.47] A. Koller and M. Beranek, “Einige neue Erkenntnisse über die Degradation von Titanaten im Zusammenhang mit der Exoemission,” Czech, J. Phys., Vol. 9, pp. 402-403, 1959. [1.48] G.. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, “Electron Emission from Ferroelectrics,” J. Appl. Phys., Vol. 88, pp. 6109-6161, 2000. [1.49] W. Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001. [1.50] E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, and T. Nakagiri, “A 10-in. Surface-Conduction Electron-Emitter Display,” J. SID, Vol. 5, pp. 345-348, 1997. [1.51] J. A. Oro and D. D. Ball, “Lateral field-emission devices with subtenth-micron emitter to anode spacing,” J. Vac. Sci. Technol. B, Vol. 11, pp. 464-467, 1993. [1.52] Y. Gotoh, T. Ohtake, N. Fujita, K. Inoue, H. Tsuji, and J. Ishikawa, “Fabrication of lateral-type thin-film edge field emitters by focused ion beam technique,” J. Vac. Sci. Technol. B, Vol. 13, pp. 465-468, 1995. [1.53] C. S. Lee and C. H. Han, “A novel sub-micron gap fabrication technology using chemical–mechanical polishing (CMP): application to lateral field emission device (FED),” Sens. Actuators A, Vol. 97-98, pp. 739-743, 2002. [1.54] F. J. Himpsel, J. A. Knapp, J. A. van Vechten, and D. E. Eastman, “Quantum photoyield of diamond(111)—A stable negative-affinity emitter,” Phys. Rev. B, Vol. 20, pp. 624-627 ,1979. [1.55] S. Lee, B. K. Ju, Y. H. Lee, D. Jeon, and M. H. Oh, “Fabrication and field emission study of gated diamondlike-carbon-coated silicon tips,” J. Vac. Sci. Technol. B, Vol. 15, p.425, 1997. [1.56] K. L. Park, J. H. Moon, S. J. Chung, J. Jang, M. H. Oh, and W. I. Milne, “Deposition of N-type Diamond-like Carbon by Using the Layer-by-layer Technique and its Electron Emission Properties,” Appl. Phys. Lett., Vol. 70, pp. 1381-1383, 1997. [1.57] F. Y. Chuang, C. Y. Sun, T. T. Chen, and I. N. Lin, “Local Electron Field Emission Characteristics of Pulsed Laser Deposited Diamond-like Carbon Films,” Appl. Phys. Lett., Vol. 69, pp. 3504-3506, 1996 [1.58] J. Robertson, “Recombination and Photoluminescence Mechanism in Hydrogenated Amorphous Carbon,” Phys. Rev. B, Vol. 53, pp.16302-16305, 1996. [1.59] J. Rinstein, J. Schafer, and L. Ley, “Effective Correlation Energies for Defects in a-C:H from a Comparison of Photelectron Yield and Electron Spin Resonance Experiments,” Diam. Relat. Mater., Vol. 4, pp. 508-516, 1995. [1.60] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991. [1.61] W. A. de Heer, A. Chateline, D. Ugrate, “A Carbon Nanotube Field-emission Electron Source,” Science, Vol. 270, pp. 1179-1180, 1995. [1.62] K. A. Dean and B. R. Chalamala, “Current Saturation Mechanisms in Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 76, pp. 375-377, 2000. [1.63] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large Current Density from Carbon Nanotube Field Emitters,” Appl. Phys. Lett., Vol. 75, pp. 873-875, 1999. [1.64] H. Zeng, L. Zhu, G. Hao, and R. Sheng, “Synthesis of various forms of carbon nanotubes by AC arc discharge,” Carbon, Vol. 36, pp. 259-261, 1998. [1.65] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, “Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal,” Chem. Phys. Lett., Vol. 278, pp. 102-106, 1997. [1.66] M. Su, B. Zheng, and J. Liu, “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity,” Chem. Phys. Lett., Vol. 322, pp. 321-326, 2000.
Chapter 2 [2.1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991. [2.2] W. A. de Heer, A. Châtelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source,” Science, Vol. 270, pp. 1179-1180, 1995. [2.3] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, p. 512, 1999. [2.4] P. G. Collins and A. Zettl, “A simple and robust electron beam source from carbon nanotubes,” Appl. Phys. Lett., Vol. 69, pp. 1969-1971, 1996. [2.5] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields,” Appl. Phys. Lett., Vol. 70, pp. 3308-3310, 1997. [2.6] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Very Large Current Density from Carbon Nanotube Field Emitters,” IEDM Technical Digest, pp. 705-708, 1999. [2.7] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett., Vol. 75, pp. 3129-3131, 1999. [2.8] J. Yotani, S. Uemura, T. Nagasako, H. Kurachi, H. Yamada, T. Ezaki, T. Maesoba, T. Nakao, M. Ito, Y. Saito, and M. Yumura, “CNT-FED for Character Displays,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 828-831, 2004. [2.9] K. A. Dean, B. F. Coll, E. Howard, S. V. Johnson, M. R. Johnson, H. Li, D. C. Jordan, L. Hilt Tisinger, M. Hupp, S. G. Thomas, E. Weisbrod, S. M. Smith, S. R. Young, J. Baker, D. Weston, W. J. Dauksher, Y. Wei, and J. E. Jaskie, “Color Field Emission Display for Large Area HDTV,” SID Int. Symp. Dig. Tech. Pap., Vol. 36, pp. 1936-1939, 2005. [2.10] R. L. Fink, L. H. Thuesen, V. Ginsberg, D. S. Mao, Y. J. Li, and Z. Yaniv, “Twenty-Five Inch Diagonal Carbon Nanotube Field Emission Display,” SID Int. Symp. Dig. Tech. Pap., Vol. 37, pp. 1748-1751, 2006. [2.11] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett., Vol. 75, pp. 3129-3131, 1999. [2.12] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, and J. M. Kim, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett., Vol. 78, pp. 1547-1549, 2001. [2.13] S. I. Honda, K. Y. Lee, K. Aoki, T. Hirao, K. Oura, and M. Katayama, “Low-Temperature Synthesis of Aligned Carbon Nanofibers on Glass Substrates by Inductively Coupled Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 45, pp. 5326-5328, 2006. [2.14] Y. S. Woo, I. T. Han, Y. J. Park, H. J. Kim, J. E. Jung, N. S. Lee, D. Y. Jeon, and J. M. Kim, “Effect of Ion Bombardment on Microstructures of Carbon Nanotubes Grown by Electron Cyclotron Resonance Chemical Vapor Deposition at Low Temperatures,” Jpn. J. Appl. Phys., Vol. 42, pp. 1410-1413, 2003. [2.15] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, Vol. 282, pp. 1105-1107, 1998. [2.16] Y. J. Park, I. T. Han, H. J. Kim, Y. S. Woo, N. S. Lee, Y. W. Jin, J. E. Jung, J. H. Choi, D. S. Jung, C. Y. Park, and J. M. Kim, “Effect of Catalytic Layer Thickness on Growth and Field Emission Characteristics of Carbon Nanotubes Synthesized at Low Temperatures Using Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 41, pp. 4679-4685, 2002. [2.17] I. T. Han, H. J. Kim, Y. J. Park, Y. W. Jin, J. E. Jung, J. M. Kim, B. K. Kim, N. S. Lee, and S. K. Kim, “Synthesis of Highly Crystalline Multiwalled Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Buffer Gases,” Jpn. J. Appl. Phys., Vol. 46, pp. 3631-3635, 2004. [2.18] S. Hofmann, G. Csa´nyi, A. C. Ferrari, M. C. Payne, and J. Robertson, “Surface Diffusion: The Low Activation Energy Path for Nanotube Growth,” Phys. Rev. Lett., Vol. 95, p. 036101, 2005. [2.19] S. Hofmann, C. Ducati, J. Robertson and, B. Kleinsorge, “Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 135-137, 2003. [2.20] R. T. L. Baker and M. A. Barber: in Chemistry and Physics of Carbon, ed. P. L. Walker and P. A. Thrower (Dekker, New York, 1978), Vol. 14, p. 83. [2.21] C. J. Lee, J. Park, S. Han, and J. Ihm, “Growth and field emission of carbon nanotubes on sodalime glass at 550°C using thermal chemical vapor deposition,” Chem. Phys. Lett., Vol. 337, pp. 398-403, 2001. [2.22] C. J. Lee, T. J. Lee, and J. Park, “Carbon nanofibers grown on sodalime glass at 500°C using thermal chemical vapor deposition,” Chem. Phys. Lett., Vol. 340, pp. 413-418, 2001. [2.23] G. Takeda, L. Pan, S. Akita, and Y. Nakayama, “Vertically Aligned Carbon Nanotubes Grown at Low Temperatures for Use in Displays,” Jpn. J. Appl. Phys., Vol. 44, pp. 5642-5645, 2005. [2.24] Y. Ishikawa and H. Jinbo, “Synthesis of Multiwalled Carbon Nanotubes at Temperatures below 300℃ by Hot-Filament Assisted Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 44, pp. L394-L397, 2005. [2.25] K. Kamada, T. Ikuno, S. Takahashi, T. Oyama, T. Yamamoto, M. Kamizono, S. Ohkura, S. Honda, M. Katayama, T. Hirao, and K. Oura, “Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst,” Appl. Surf. Sci., Vol. 212-213, pp. 383-387, 2003. [2.26] A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Rres, “In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition,” Appl. Phys. A, Vol. 81, pp. 223-240, 2003. [2.27] L. Jodin, A. C. Dupuis, E. Rouviere, and P. Reiss, “Influence of the Catalyst Type on the Growth of Carbon Nanotubes via Methane Chemical Vapor Deposition,” J. Phys. Chem. B, Vol. 110, pp. 7328-7333, 2006. [2.28] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth,” Chem. Phys. Lett., Vol. 348, pp. 368-374, 2001. [2.29] H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, and D. H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition,” Chem. Phys. Lett., Vol. 374, pp. 222-228, 2003. [2.30] G. A. J. Amaratunga and S. R. P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes,” Appl. Phys. Lett., Vol. 68, pp. 2529-2531, 1996. [2.31] K. Y. Lee, S. Honda, M. Katayama, T. Miyake, K. Himuro, K. Oura, J. G. Lee, H. Mori, and T. Hirao, “Vertically aligned growth of carbon nanotubes with long length and high density,” J. Vac. Sci. Technol. B, Vol. 23, pp. 1450-1453, 2005. [2.32] S. Satio, A. Kawabata, D. Kondo, M. Nihei, and Y. Awano, “Carbon nanotube growth from titanium–cobalt bimetallic particles as a catalyst,” Chem. Phys. Lett., Vol. 402, pp. 149-154, 2005. [2.33] G. Radhakrishnan, P. M. Adams, and D. M. Speckman, “Low temperature pulsed laser deposition of titanium carbide on bearing steels,” Thin Solid Films, Vol. 358, pp. 131-138, 2000. [2.34] Y. Y. Chang, S. J. Yang, and D. Y. Wang, “Structural and mechanical properties of Cr–C–O thin films synthesized by a cathodic-arc deposition process,” Surface & Coatings Technology, Vol. 202, pp. 941-945, 2007.
Chapter 3 [3.1] C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, “The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition,” J. Appl. Phys., Vol. 95, pp. 6387-6391, 2004. [3.2] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, p. 512, 1999. [3.3] C. P. Deck and K. Vecchio, “Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams,” Carbon, Vol. 44, pp. 267-275, 2006. [3.4] Y. M. Shyu, F. C. N. Hong, “The effects of pre-treatment and catalyst composition on growth of carbon nanofibers at low temperature,” Diamond Relat. Mater., Vol. 10, pp. 1241-1245, 2001. [3.5] Y. J. Park, I. T. Han, H. J. Kim, Y. S. Woo, N. S. Lee, Y. W. Jin, J. E. Jung, J. H. Choi, D. S. Jung, C. Y. Park, and J. M. Kim, “Effect of Catalytic Layer Thickness on Growth and Field Emission Characteristics of Carbon Nanotubes Synthesized at Low Temperatures Using Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys., Vol. 41, pp. 4679-4685, 2002. [3.6] M. P. Siegal, D. L. Overmyer, and F. H. Kaatz, “Controlling the site density of multiwall carbon nanotubes via growth conditions,” Appl. Phys. Lett., Vol. 84, pp. 5156-5158, 2004. [3.7] I. T. Han, H. J. Kim, Y. J. Park, Y. W. Jin, J. E. Jung, J. M. Kim, B. K. Kim, N. S. Lee, and S. K. Kim, “Synthesis of Highly Crystalline Multiwalled Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Buffer Gases,” Jpn. J. Appl. Phys., Vol. 43, pp. 3631-3635, 2004. [3.8] G. Y. Xiong, Y. Suda, D. Z. Wang, J. Y. Huang, and Z. F. Ren, “Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition,” Nanotechnology, Vol. 16, pp. 532-535, 2005. [3.9] K. Kuwana, H. Endo, K. Saito, D. Qian, R. Andrews, and E. A. Grulke, “Catalyst deactivation in CVD synthesis of carbon nanotubes,” Carbon, Vol. 43, pp. 253-260, 2005. [3.10] M. Sveningsson, R. E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, “Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films,” Appl. Phys. A, Vol. 73, pp. 409-418, 2001. [3.11] C. Lan, P. B. Amama, T. S. Fisher, and R. G. Reifenberger, “Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes,” Appl. Phys. Lett., Vol. 91, p. 093105, 2007. [3.12] G. F. Malgas, C. J. Arendse, N. P. Cele, and F. R. Cummings, “Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD,” J Mater. Sci., Vol. 43, pp. 1020-1025, 2008. [3.13] S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, “Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 135-137, 2003. [3.14] R. T. L. Baker and M. A. Barber: in Chemistry and Physics of Carbon, ed. P. L. Walker and P. A. Thrower (Dekker, New York, 1978), Vol. 14, p. 83. [3.15] K. K. Nanda, S. N. Sahu, and S. N. Behera, “Liquid-drop model for the size-dependent melting of low-dimensional systems,” Phys. Rev. A, Vol. 66, p. 013208, 2002.
Chapter 4 [4.1] Q. H. Wang, M. Yan, and R. P. H. Chang, “Flat panel display prototype using gated carbon nanotube field emitters,” Appl. Phys. Lett., Vol. 78, pp. 1294-1296, 2001. [4.2] K. J. Chen, W. K. Hong, C. P. Lin, K. H. Chen, L. C. Chen, and H. C. Cheng, “Low Turn-On Voltage Field Emission Triodes With Selective Growth of Carbon Nanotubes,” IEEE Electron Device Lett., Vol. 22, pp. 516-518, 2001. [4.3] H. C. Cheng, K. J. Chen, W. K. Hong, F. G. Tantair, C. P. Lin, K. H. Chen, and L. C. Chen, “Fabrication and Characterization of Low Turn-On Voltage Carbon Nanotube Field Emission Triodes,” Electronchem. Solid-State Lett., Vol. 4, pp. H15-H17, 2001. [4.4] Y. S. Choi, J. H. Park, W. B. Choi, C. J. Lee, S. H. Jo, C. G. Lee, J. H. You, J. E. Jung, N. S. Lee, and J. M. Kim, “An under-gate triode structure field emission display with carbon nanotube emitters,” Diamond Relat. Mater., Vol. 10, pp. 1705-1708, 2001. [4.5] J. E. Jung, Y. W. Jin, J. H. Choi, Y. J. Park, T. Y. Ko, D. S. Chung, J. W. Kim, J.E. Jang, S. N. Cha, W. K. Yi, S. H. Cho, M. J. Yoon, C. G. Lee, J. H. You, N. S. Lee, J. B. Yoo, and J. M. Kim, “Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays,” Physica B, Vol. 323, pp. 71-77, 2002. [4.6] Y. S. Choi, J. H. Kang, H. Y. Kim, B. G. Lee, C. G. Lee, S. K. Kang, Y. W. Jin, J. W. Kim, J. E. Jung, and J. M. Kim, “A simple structure and fabrication of carbon-nanotube field emission display,” Appl. Surf. Sci., Vol. 221, pp. 370-374, 2004. [4.7] D. Y. Kim, J. B. Yoo, I. T. Han, H. J. Kim, H. J. Kim, J. E. Jung, Y. W. Jin, J. M. Kim, and K. H. Chin, “The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure,” Diamond Relat. Mater., Vol. 14, pp. 2084-2088, 2005. [4.8] Y. C. Choi, K. S. Jeong, I. T. Han, H. J. Kim, Y. W. Jin, J. M. Kim, B. G. Lee, J. H. Park, and D. H. Choe, “Double-gated field emitter array with carbon nanotubes grown by chemical vapor deposition,” Appl. Phys. Lett., Vol. 88, p. 263504, 2006. [4.9] C. M. Tang, T. A. Swyden, and A. C. Ting, “Planar lenses for field-emitter arrays,” J. Vac. Sci. Technol. B, Vol. 13, pp. 571-575, 1995. [4.10] L. Dvorson and A. I. Akinwande, “Double-gated Spindt emitters with stacked focusing electrode,” J. Vac. Sci. Technol. B, Vol. 20, pp. 53-59, 2002. [4.11] C. Xie, Y. Wei, and B. G. Smith, “A Novel Approach for Focusing Electron Beams Using Low-Cost Ceramic Grid,” IEEE Trans. Electron Devices, Vol. 49, pp. 324-328, 2002. [4.12] Wei Zhu, “Vacuum Microelectronics,” John-Wiley & Sons publisher, New York, 2001. [4.13] N. Tsukahara, H. Nakano, H. Murakami, M. Hirakawa, T. Kojima, K. Kageyama, and T. Sasaki, “A 4.8 inch GNF-FED with A Mesh Gate Structure,” SID Int. Symp. Dig. Tech. Pap., Vol. 37, pp. 660-662, 2006. [4.14] Y. Ishizuka, T. Oyaizu, T. Oguchi, H. Hoshi, and E. Yamaguchi, “High-brightness, High-resolution, High-contrast, and Wide-gamut Features of Surface-conduction Electron-emitter Displays,” IDW ‘05, Tech Digest, pp. 1655-1658, 2005. [4.15] J. H. Choi, A. R. Zoulkarneev, Y. W. Jin, Y. J. Park, D. S. Chung, B. K. Song, I. T. Han, H. W. Lee, S. H. Park, H. S. Kang, H. J. Kim, J. E. Jung, and J. M. Kim, “Carbon nanotube field emitter arrays having an electron beam focusing structure,” Appl. Phys. Lett., Vol. 84, pp. 1022-1024, 2004. [4.16] J. H. Choi, A. R. Zoulkarneev, Y. J. Park, D. S, Chung, B. K. Song, H. S. Kang, C. W. Baik, I. T. Han, H. J. Kim, M. J. Shin, H. J. Kim, T. S. Oh, Y. W. Jin, J. M. Kim, and N. Lee, “Optimization of Electron Beam Focusing for Gated Carbon Nanotube Field Emitter Arrays,” IEEE Trans. Electron Devices, Vol. 52, pp. 2584-2590, 2005. [4.17] M. S. Dresselhaus and P. C. Eklund, “Phonons in carbon nanotubes,” Adv. Phys., Vol. 52, pp. 705-814, 2000.
Chapter 5 [5.1] H. F. Gray, G. J. Campisi, and R. F. Greene, “A Vacuum Field Effect Transistor Using Silicon Field Emitter Arrays,” IEDM Technical Digest, pp. 776-779, 1986. [5.2] I. Brodie and C. A. Spindt, “Vacuum microelectronics,” Adv. Electron. Electron Phys., Vol. 83, pp. 1-106, 1992. [5.3] H. H. Busta, “Vacuum microelectronics-1992,” J. Micromech. Microeng, Vol. 2, pp. 43-74, 1992. [5.4] J. P. Spallas and N. C. MacDonald, “Fabrication and Operation of Silicon Field Emission Cathode Arrays,” IEDM Technical Digest, pp. 209-212, 1991. [5.5] T. Maruyama, S. Katoh, and T. Kobayashi, “Design and Experiments on Improved Cathode Configuration for Diamond Planar Field Emission Display Elements,” Jpn. J. Appl. Phys., Vol. 42, pp. 274-279, 2003. [5.6] J. A. Oro and D. D. Ball, “Lateral field-emission devices with subtenth-micron emitter to anode spacing,” J. Vac. Sci. Technol. B, Vol. 11, pp. 464-467, 1993. [5.7] Y. Gotoh, K. Inoue, T. Ohtake, H. Ueda, Y. Hishida, H. Tsuji, and J. Ishikawa, “Application of Focused Ion Beam Techniques to the Fabrication of Lateral-Type Thin-Film Edge Field Emitters,” Jpn. J. Appl. Phys., Vol. 33, pp. L63-L66, 1994. [5.8] Y. Gotoh, T. Ohtake, N. Fujita, K. Inoue, H. Tsuji, and J. Ishikawa, “Fabrication of lateral-type thin-film edge field emitters by focused ion beam technique,” J. Vac. Sci. Technol. B, Vol. 13, pp. 465-468, 1995. [5.9] C. S. Lee and C. H. Han, “A novel sub-micron gap fabrication technology using chemical–mechanical polishing (CMP): application to lateral field emission device (FED),” Sens. Actuators A, Vol. 97-98, pp. 739-743, 2002. [5.10] W. J. Zang, J. H. Lee, J. H. Lee, Y. H. Bae, C. A. Choi, and S. H. Hahm, “Lateral field emission diode with wedge-type tip and nanogap on separation by implantation of oxygen silicon,” J. Vac. Sci. Technol. B, Vol. 18, pp. 1006-1008, 2000. [5.11] T. Oguchi, E. Yamaguchi, K. Sasaki, K. Suzuki, S. Uzawa, and K. Hatanaka, “A 36-inch Surface-conduction Electron-emitter Display (SED),” SID Int. Symp. Dig. Tech. Pap., Vol. 36, pp. 1929-1931, 2005. [5.12] K. M. Lee, H. J. Han, S. Choi, K. H. Park, S. G. Oh, S. Lee, and K. H. Koh, “Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films,” J. Vac. Sci. Technol. B, Vol. 21, pp. 623-626, 2003. [5.13] X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, and A. C. M. Yang, “Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma,” J. Vac. Sci. Technol. B, Vol. 18, pp. 1840-1846, 2000. [5.14] X. W. Liu, L. H. Chan, W. J. Hsieh, J. H. Lin, and H. C. Shih, “The effect of argon on the electron field emission properties of a-C:N thin films,” Carbon, Vol. 41, pp. 1143-1148, 2003. [5.15] M. S. Lim, C. M. Park, and M. K. Han, “Investigation of field emission characteristics for Si-base materials: Titanium silicide, poly-Si, and single crystal Si,” J. Vac. Sci. Technol. B, Vol. 17, pp. 635-637, 1999. [5.16] W. P. Kang, J. L. Davidson, A. Wisitsora-at, M. Howell, A. Jamaludin, Y. M. Wong, K. L. Soh, and D. V. Kerns, “Fabrication and field emission characteristics of lateral diamond field emitter,” J. Vac. Sci. Technol. B, Vol. 21, pp. 593-596, 2003. [5.17] J. Y. Luo, K. S. Liu, J. S. Lee, I. N. Lin, and H. F. Cheng, “The influence of film-to-substrate characteristics on the electron field emission behavior of the diamond films,” Diamond Relat. Mater., Vol. 7, pp. 704-710, 1998. [5.18] A. Hart, B. S. Satyanarayana, W. I. Milne, and J. Robertson, “Field emission from tetrahedral amorphous carbon as a function of surface treatment and substrate material,” Appl. Phys. Lett., Vol. 74, pp. 1594-1596, 1999. [5.19] N. S. Xu, J. Chen, and S. Z. Deng, “Physical origin of nonlinearity in the Fowler–Nordheim plot of field-induced emission from amorphous diamond films: Thermionic emission to field emission,” Appl. Phys. Lett., Vol. 76, pp. 2463-2465, 2000. [5.20] J. B. Cui, K. B. Teo, J. T. H. Tsai, J. Robertson, and W. I. Milne, “The role of dc current limitations in Fowler–Nordheim electron emission from carbon films,” Appl. Phys. Lett., Vol. 77, pp. 1831-1833, 2000.
|