(3.239.33.139) 您好!臺灣時間:2021/03/02 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宏燁
研究生(外文):Hung Yeh Lin
論文名稱:二維Ginzburg-Landau模型模擬第二類超導的熱擾動和無序現象
論文名稱(外文):Thermal fluctuations and disorder in 2D Ginzburg-Landau model
指導教授:儒森斯坦
指導教授(外文):Baruch Rosenstein
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:57
中文關鍵詞:二維第二類超導體
外文關鍵詞:Ginzburg Landausuperconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們使用二維金斯堡-朗道模型及準動量基底來模擬二維第二類超導體,並由蒙地卡羅方法來分析研究其在熱擾動和無序影響下的行為。在有序條件下,我們計算了漩渦系統的Abrikosov ratio、比熱、內能、漩渦的排列情況及結構係數。由於內能的分布圖呈現雙峰的結構,我們判斷系統的相變屬於弱一級相變,並且推論無限大系統的相變約化溫度 t_m~ -14.1。藉由分析Bragg peaks在動量空間的行為,可以得知分別在液態和固態條件下漩渦的詳細排列狀況。我們測量了結構係數和溫度及系統尺寸的關係圖,分別得到了各系統的漩渦晶格熔點以及結構係數與溫度的代數關係。接著,對系統加入了一個隨機亂數場,使系統變成了無序的狀態。然後討論了有序和無序系統在漩渦排列和結構函數的差異處,並且更進一步的分析無序系統的磁化率來試著得到漩渦液態和玻璃態的分界線。
The thermal fluctuations and disorder in two dimensional Ginzburg-Landau model in the quasimomentum basis are studied by Monte Carlo simulation. In the pure vortex system, the Abrikosov ratio, specific heat, internal energy and structure factor were calculated. The melting phase transition is weakly first order as is inferred from a double - peak of the internal energy distribution. The melting reduced (dimensionless) temperature t_m~ -14.1 is extrapolated for the infinite system size. The behavior of Bragg peaks indicates that the different of arrangement of solid and liquid states. The temperature and size dependence of structure factor shows the melting temperature t_m of flux-line-lattice and the algebraic relation of system size and structure factor. The 〖δT〗_c disorder is simulated by adding the random potential field is added to the quadratic term of the GL energy. The difference between the pure and the disordered system is demonstrated by snapshots of the vortex configurations and the structure factor. I tried to locate the glass line of disorder system by analyzing the distribution of magnetization.
Acknowledgment ……………………………………………………i
Abstract (Chinese version) ………………………………………ii
Abstract (English version) ………………………………………iii
Contents ……………….….iv
Chapter 1 Introduction ……………………………………1
Chapter 2 Model and its major simplifications ………………………6
2.1 Ginzburg - Landau free energy for constant magnetic field….…… 6
2.2 Free energy expressed via variables in the quasimomentum basis. Clean case ………………………………………………… 9
2.3 Disorder term in the GL free energy…………………………13
2.4 Thermal fluctuations ……………………………………18
Chapter 3 Monte Carlo method…………………………………19
3.1 Metropolis algorithm………………………………19
3.2 Monte Carlo simulation………………………………………20
Chapter 4 Results for the clean system subject to thermal fluctuations……21
4.1 Abrikosov ratio, hexagonal symmetry of the crystalline state………21
4.2 Normalized specific heat……………………23
4.3 Internal energy and its distribution…………………….24
4.4 Vortices configuration and Structure factor…………………28
Chapter 5 Quenched disorder…………………………….35
5.1 Comparison of Structure factor with that of pure vortex system…35
5.2 The glass line of the disorder system…………………………39
Chapter 6 Conclusion …………………………………43
Appendix ……………………………………………………45
Appendix A ………………………………………………45
Appendix B ……………………………………………………48
Appendix C ……………………………………………………52
References ……………………………………56
1 Y. Kato and N. Nagaosa, Phys. Rev. B 47, 2932 (1993); 48,7383 (1993).
2 J. Hu and A.H. MacDonald, Phys. Rev. Lett. 71, 432 (1993).
3 M. S. Li and T. Natterman, Phys. Rev. B. 67, 194520 (2003).
4 A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32,1444 (1957).
5 J. A. O'Neill and M. A. Moore, Phys. Rev. B. 48, 374 (1992).
6 A. K. Kienappel and M. A. Moore, Phys. Rev. B. 60, 6795 (1999).
7 H. H. Lee and M. A. Moore, Phys. Rev. B. 49, 9240 (1994).
8 J. Hu and A. H. MacDonald, Phys. Rev. B. 49, 15263 (1994).
9 J. Hu and A. H. MacDonald, Phys. Rev. B. 56, 2788 (1997).
10 M. J. Dodgson and M. A. Moore, Phys. Rev. B. 55, 3816 (1997).
11 R. Sasik and D. Stroud, Phys. Rev. B. 49, 16074 (1994).
12 D. Li and B. Rosenstein, Phys. Rev. B. 60, 9704 (1999).
13 D. Li, B. Rosenstein and V. Vinokur, Journal of superconductivity and Novel Magnetism. 19, 369 (2006).
14 J. M. Kosterlitz and D. J. Thouless, J. Phys. Phs. C 6, 1881 (1973).
15 B. I. Halperin and D. R. nelson, Phys. Rev. Lett. 41, 121(1978).
16 D. R. nelson and B. I. Halperin, Phys. Rev. B19, 2457(1979).
17 A. P. Young, Phys. Rev. B19, 1855(1979).
18 B. Rosenstein and D. Li. The Ginzburg-Landau Theory of Type II superconductors. 2007. (Unpublished).
19 J. B. Ketterson and S. N. Song. Superconductivity. Cambridge, 1999.
20 C. P. Poole, H. A. Farach and R. J. Creswick. Superconductivity. Academic Press, 1995.
21 D. P. Landau and K. Binder. Monte Carlo simulations in Statistical Physics. Cambridge, 2000.
22 陳思,“Monte Carlo simulation of vortex-line melting in type-II two-dimensional superconductors” , 北京大學,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔