(54.236.58.220) 您好!臺灣時間:2021/02/27 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾君煒
研究生(外文):Junwei Chung
論文名稱:非矽基垂直式梳狀元件之製程研究
論文名稱(外文):Novel Fabrication Schemes for Non-Silicon-Based Vertical Comb Drive
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Wensyang Hsu
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:垂直式梳狀致動器立體微結構低成本製程高分子金屬
外文關鍵詞:vertical comb drive3D microstructurelow costpolymermetal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
由於優異的出平面運動特性,垂直式梳狀致動器如今已成為熱門的微機電元件。至今為止,所有被發展出來的垂直式梳狀致動器皆以矽基微加工技術進行製作,並以矽作為結構的材料。然而,這些必須由深反應離子蝕刻(DRIE)進行加工,並以SOI晶片為主的技術,也意味著較高的製作成本。相對於矽基材料,金屬與高分子正發展成為極具吸引力的替代性材料,可用來製作低成本的微元件以取代矽基元件。然而,至今仍未見有文獻利用高分子或金屬製作垂直式梳狀致動器。
本論文提出兩種新式的製作方法用以製作高分子與金屬垂直式梳狀致動器,這兩種方法皆屬低溫及低成本的製程,在僅需類LIGA製程基礎設備的狀況下,提供了高可適性以及容易負擔的製作方案。首先,論文中對垂直式梳狀致動器進行理論及有限元素分析,以便進行尺寸上的設計。接著,為了製作高分子垂直式梳狀致動器,此處提出一雙面多重部分曝光(DoMPE)的製程平台,此平台經由正面及背面的多階曝光,可有效擴充懸浮光阻結構的外形複雜度。經由此平台及其所建立的參數資料庫,各種複雜的三維光阻結構及垂直式梳狀致動器皆被成功製作及展示。在比較理論分析及實驗結果之後,以高分子製作垂直式梳狀致動器的可行性已被成功驗證。
在金屬垂直式梳狀致動器的製作方面,首先對電鑄鎳進行材料特性調查,並發現電鑄鎳的材料特性會隨著厚度及電流密度的變化而有明顯的改變,這對設計鎳元件而言將很有幫助。在製程上,電鑄鎳與銅分別被用來當作結構層及犧牲層,在交替電鑄鎳與銅之下建構出垂直式梳狀致動器的結構,最後再由濕式蝕刻進行結構釋放。此外,經由控制光阻的斜角,亦可藉由此方法製作具有斜角的垂直式梳狀致動器。
In recent MEMS research, vertical comb drives (VCDs) have attracted lots of attention due to their superior characteristics in out-of-plane motion. To date, all the reported VCDs were fabricated by silicon-based micromachining with using silicon as the structural material, and exhibit a high cost solution with the DRIE process and the mainly required SOI-wafers. In contrast to silicon, the metals and polymers are becoming attractively alternative materials for fabricating the low cost micro devices and components to their silicon or glass-based counterparts. However, no polymer or metal-based VCDs have been reported yet.
In this dissertation, novel fabrication methods are proposed to fabricate the VCDs in different materials―polymer and metal. Both of them are low temperature and low cost techniques, and provide a flexible and affordable solution with the basic equipment of LIGA-like process. First, the operation model of VCD is performed with theoretical analysis and FEM simulation for dimensional design. For the fabrication of polymer-based VCD, the double-side multiple partial exposure (DoMPE) method is developed to extend the multi-level morphology on both the front and back sides of the suspended photoresist microstructures. Depending on the established processing data, different 3D photoresist microstructures made of photoresist AZ9260® are successfully demonstrated, as well as the polymer-based VCD. By comparing the analytical and experimental results, the feasibility on fabricating polymer-based VCD is verified.
For the fabrication of metal-based VCD, the properties of electroplated nickel are first characterized with different thicknesses and current densities, and obvious variations on material properties are observed, which would be helpful in designing micro devices by using electroplated nickel as structural material. To fabricate the metal-based VCD, electroplated nickel and copper are used as the structural and sacrificial layers. By electrodepositing nickel and copper in turn with thick photoresist as the molds, the VCD structures are constructed with the final release performed by wet etching. Also, the VCD with angled fingers could be further realized by controlling the angle of photoresist sidewall by this approach.
摘 要 i
Abstract ii
誌 謝 iii
Content iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Contributions 3
1.3 Dissertation Outline 4
Chapter 2 Operation Principle 6
2.1 VCD with Torsional Motion 6
2.2 Electrostatic Force 7
2.3 Force Balance Analysis 8
2.4 Effect of Angled Fingers 11
Chapter 3 Double-Side Multiple Partial Exposure (DoMPE) 15
3.1 Procedure of DoMPE Method 17
3.1.1 Suspended front-side multi-level microstructures 17
3.1.2 Suspended back-side multi-level microstructures 18
3.2 Photoresist Processing Parameters 20
3.3 Gray-tone Mask 24
3.4 Results of 3D Photoresist Microstructures 25
3.5 Summary 29
Chapter 4 Polymer-Based Vertical Comb Drive 31
4.1 Fabrication Process 31
4.2 Fabrication Results 33
4.3 Characterization and Discussions 35
4.4 Summary 37
Chapter 5 Property Characterization of Electroplated Nickel 38
5.1 Sample Preparation 40
5.2 Measurements 42
5.3 Results and Discussions 44
5.4 Summary 50
Chapter 6 Metal-Based Vertical Comb Drive 51
6.1 Fabrication Process 51
6.1.1 Modified Process of Metal-Based VCD 54
6.1.2 Slope Photoresist for Angled VCD 57
6.2 Results and Discussions 58
6.2.1 Metal-Based VCD by Modified Process 58
6.2.2 Slope Control of Photoresist Sidewall 65
6.3 Summary 69
Chapter 7 Conclusion 71
7.1 Summary 71
7.2 Future Research Direction 73
7.2.1 Other Approaches to Fabricate the Metal-Based VCD 74
References 78
[1] W.C. Tang, T.H. Nguyen and R.T. Howe, “Laterally driven polysilicon resonant microstructures” Tech. Dig. IEEE Micro Electro Mech. Syst. Workshop, pp.53–59, Salt Lake City, 20–22 Feb., 1989
[2] W. Ye, S. Mukherjee and N.C. MacDonald, “Optimal shape design of an electrostatic comb drive in microelectromechanical systems”, J. Microelectromech. Syst., vol. 7, pp.16–26, 1998
[3] T. Hirano, T. Furuhata, K.J. Gabriel and H. Fujita, “Design, fabrication, and operation of submicron gap comb-drive microactuators”, J. Microelectromech. Syst., vol. 1, pp.52–59, 1992
[4] L. Lin, R.T. Howe and A.P. Pisano, “Microelectromechanical filters for signal processing”, J. Microelectromech. Syst., vol. 7, pp.286–294, 1998
[5] K.Y. Park, W.C. Lee, H.S. Jang, Y.S. Oh and B.J. Ha, “Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability”, Dig. IEEE/ASME MEMS Workshop, pp.637–642, Heidelberg, Germany, 1998
[6] K. Tanaka, Y. Mochida, M. Sugimoto, K. Moriya, T. Hasegawa, K. Atsuchi and K. Ohwada, “A micromachined vibrating gyroscope”, Sensors and Actuators A, vol. 50, pp.111–115, 1995
[7] W.-H. Juan and S.W. Pang, “High-aspect-ratio Si vertical micromirror arrays for optical switching”, J. Microelectromech. Syst., vol. 7, pp.207–213, 1998
[8] D. Hah, S. T.-Y. Huang, J.-C. Tsai, H. Toshiyoshi and M.C. Wu, “Low-voltage, large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators”, J. Microelectromech. Syst., vol. 13, pp.279–289, 2004
[9] A. Selvakumar and K. Najafi, “Vertical comb array microactuators”, J. Microelectromech. Syst., vol. 12, pp.440–449, 2003
[10] J.-H. Lee, Y.-C. Ko, D.-H. Kong, J.-M. Kim, K.B. Lee and D.-Y. Jeon, “Design and fabrication of scanning mirror for laser display”, Sensors and Actuators A, vol. 96, pp.223–230, 2002
[11] J.-L. A. Yeh, H. Jiang and N.C. Tien, “Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator”, J. Microelectromech. Syst., vol. 8, pp.456–465, 1999
[12] D. Hah, C.-A. Choi, C-K Kim and C-H Jun, “A self-aligned vertical comb-drive actuator on an SOI wafer for a 2D scanning micromirror”, J. Micromech. Microeng., vol. 14, pp.1148–1156, 2004
[13] V. Milanović, “Multilevel beam SOI-MEMS fabrication and applications”, J. Microelectromech. Syst., vol. 13, pp.19–30, 2004
[14] Q.X. Zhang, A.Q. Liu, J. Li and A.B. Yu, “Fabrication technique for microelectromechanical systems vertical comb-drive actuators on a monolithic silicon substrate”, J. Vac. Sci. Technol. B, vol. 23, pp.32–41, 2005
[15] J. Kim, S. Park and D. Cho, “A novel electrostatic vertical actuator fabricated in one homogeneous silicon wafer using extended SBM technology”, Proc. of Transducers’01, pp.756-759, 2001
[16] J. M.-L. Tsai, H.-Y. Chu, J. Hsieh and W. Fang, “The BELST II process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications”, J. Micromech. Microeng., vol. 14, pp.235–241, 2004
[17] K.-H. Jeong and L.P. Lee, “A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications”, J. Micromech. Microeng., vol.15, pp.277–281, 2005
[18] D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors”, J. Selected Topics In Quantum Electronics, vol. 10, no.3, pp.505–513, 2004
[19] J. C. Chiou and Y. J. Lin, “A novel large displacement electrostatic actuator: pre-stress comb-drive actuator”, J. Micromech. Microeng., vol. 15, pp.1641–1648, 2005
[20] J. Kim, H. Choo, L. Lin and R. S. Muller, “Microfabricated torsional actuator using self-aligned plastic deformation”, Proc. of Transducers’03, pp.1015–1018, 2003
[21] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators A, vol. 83, pp.130–135, 2000
[22] G.-B. Lee, S.-H. Chen, G.-R. Huang, W.-C. Sung and Y.-H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection”, Sensors and Actuators B, vol. 75, pp.142–148, 2001
[23] H. Becker and C. Gärtner, “Polymer microfabrication methods for microfluidic analytical applications”, Electrophoresis, vol. 21, pp.12–26, 2000
[24] P. Abgrall, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review”, J. Micromech. Microeng., vol. 17, pp.R15–R49, 2007
[25] Y. Zhao and T. Cui, “Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique”, J. Micromech. Microeng., vol. 13, pp.430–435, 2003
[26] W. Dai, K. Lian and W. Wang, “Design and fabrication of a SU-8 based electrostatic microactuator”, Microsyst. Technol., vol. 13, pp.271–277, 2007
[27] S. J. Jeong and W. Wang, “Microaccelerometers using cured SU-8 as structural material”, Proc. of SPIE, vol. 5344, pp.115–123, 2004
[28] W. Eberhardt, Th. Gerhäußer, M. Giousouf, H. Kück, R. Mohr and D. Warkentin, “Innovative concept for the fabrication of micromechanical sensor and actuator devices using selectively metallized polymers”, Sensors and Actuators A, vol. 97–98, pp.473–477, 2002
[29] M. J. Madou, Fundamentals of Microfabrication, second ed., CRC Press, New York, 2002
[30] P. M. Zavracky, S. Majumder and N. E. McGruer, “Micromechanical switches fabricated using nickel surface micromachining”, J. Microelectromech. Syst., vol. 6, pp.3–9, 1997
[31] C.-H. Ho, K.-P. Chin, C.-R. Yang, H.-M. Wu and S.-L. Chen, “Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots”, Sensors and Actuators A, vol. 102, pp.130–138, 2002
[32] C. Hsu and W. Hsu, “Design and characterization of an electrothermally driven monolithic long-stretch microdrive in compact arrangement”, J. Microelectromech. Syst., vol. 15, pp.935–944, 2006
[33] Y. Konaka and M. G. Allen, “Single- and multi-layer electroplated microaccelerometers”, Proc. of MEMS’96, pp.168–173, 1996
[34] W. Qu, C. Wenzel and G. Gerlach, “Fabrication of a 3 Ddifferential-capacitive acceleration sensor by UV-LIGA”, Sensors and Actuators A, vol. 77, pp.14–20, 1999
[35] J.-B. Yoon, C.-H. Han, E. Yoon and C.-K. Kim, “Monolithic fabrication of electroplated solenoid inductors using three-dimensional photolithography of a thick photoresist”, Jpn. J. Appl. Phys., vol. 37, pp.7081–7085, 1998
[36] G. M. Rebeiz, RF MEMS―Theory, Design, and Technology, John Wiley & Sons, Inc., New Jersey, 2003
[37] C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures”, Appl. Phys. Lett., vol. 84, pp.5434–5436, 2004
[38] Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications”, Science, vol. 299, pp.2045–2047, 2003
[39] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication”, Nature, vol. 398, pp.51–54, 1999
[40] A. Abbott, “Biology’s new dimension”, Nature, vol. 424, pp.870–872, 2003
[41] M. Han, W. Lee, S.-K. Lee and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sensors and Actuators A, vol. 111, pp.14–20, 2004
[42] B.-G. Kim, J.-H. Kim and E. Yoon, “Formation of 3-dimensional microfluidic components using double-side exposed thick photoresist molds,” 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp.627–630, Squaw Valley, California, USA, Oct. 5-9, 2003
[43] Y.-J. Chuang, F.-G. Tseng, J.-H. Cheng and W.-K. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists”, Sensors and Actuators A, vol. 103, pp.64–69, 2003
[44] R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures”, J. Am. Chem. Soc., vol. 128, pp.1796–1797, 2006
[45] N.-T. Nguyen, S.-S. Ho and C. L.-N. Low, “A polymeric microgripper with integrated thermal actuators,” J. Micromech. Microeng., vol. 14, pp.969–974, 2004
[46] A. Bertsch, H. Lorenz and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography”, Sensors and Actuators A, vol. 73, pp.14–23, 1999
[47] S. Maruo, O. Nakamura and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization”, Optics Letters, vol. 22, pp.132–134, 1997
[48] S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, “Finer features for functional microdevices”, Nature, vol. 412, pp.697–698, 2001
[49] T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization”, J. Appl. Phys., vol. 95, pp.6072–6076, 2004
[50] C. N. LaFratta, L. Li and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops”, PNAS-Proceedings of the National Academy of Science of the USA, vol. 103, no. 23, pp.8589–8594, 2006
[51] J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multibeam interference lithography”, Journal of Macromolecular Science - Polymer Reviews, vol. 45, pp.351–373, 2005
[52] K.-Y. Hung, H.-T. Hu and F.-G. Tseng, “A novel fabrication technology for smooth 3D inclined polymer microstructures with adjustable angles,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems (Transducers’03), pp.821–824, Boston, June 8-12, 2003
[53] Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault and G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications”, Microelectronic Engineering, vol. 23, pp.449–454, 1994
[54] B. Wagner, H. J. Quenzer, W. Henke, W. Hoppe and W. Pilz, “Microfabrication of complex surface topographies using grey-tone lithography”, Sensors and Actuators A, vol. 46–47, pp.89–94, 1995
[55] W. Däschner, P. Long, R. Stein, C. Wu and S. H. Lee, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy beam sensitive glass gray-level mask”, J. Vac. Sci. Technol. B, vol. 14, pp.3730–3733, 1996
[56] W. Däschner, P. Long, M. Larsson and S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask”, J. Vac. Sci. Technol. B, vol. 13, pp.2729–2731, 1995
[57] E. Mazza, S. Abel and J. Dual, “Experimental determination of mechanical properties of Ni and Ni-Fe microbars”, Microsystem Technologies, vol. 2, pp.197–202, 1996
[58] W. N. Sharpe Jr., D.V. LaVan and R. L. Edwards, “Mechanical properties of LIGA-Deposited Nickel for MEMS Transducers”, International Conference on Solid-State Sensors and Actuators (Transducers’97), pp.607–610, 1997
[59] T. E. Buchheit, S. J. Glass, J. R. Sullivan, S. S. Mani, D. A. Lavan, T. A. Friedmann and R. Janek, “Micromechanical testing of MEMS materials”, Journal of Materials Science, vol. 38, no. 20, pp.4081–4086, 2003
[60] T. Fritz, H. S. Cho, K. J. Hemker, W. Mokwa and U. Schnakenberg, “Characterization of electroplated nickel”, Microsyst. Technol., vol. 9, pp.87–91, 2002
[61] K. J. Hemker and H. Last, “Microsample tensile testing of LIGA nickel for MEMS applications”, Materials Science and Engineering, A319-321, pp.882–886, 2001
[62] H. S. Cho, K. J. Hemker, K. Lian, J. Goettert and G. Dirras, “Measured mechanical properties of LIGA Ni structures”, Sensors and Actuators A, vol. 103, pp.59–63, 2003
[63] L. H. Qian, S. C. Wang, Y. H. Zhao and K. Lu, “Microstrain effect on thermal properties of nanocrystalline Cu”, Acta Materialia, vol. 50, pp.3425–3434, 2002
[64] I. W. Gazda, “Variations in CTE as a function of prestressing”, Carbon, vol. 8, pp. 511–515, 1970
[65] W. Fang and C. Y. Lo, “On the thermal expansion coefficients of thin films”, Sensors and Actuators A, vol. 84, pp.310–314, 2000
[66] J. W. Dini and H. R. Johnson, “Coefficient of thermal expansion of sulphamate nickel electrodeposits”, Journal of Materials Science Letters, vol. 10, pp.1253–1254, 1975
[67] C. S. Pan and W. Hsu, “A microstructure for in-situ determination of residual strain”, Journal of Microelectromechanical systems, vol. 8, no. 2, pp.200–207, 1999
[68] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., vol. 7, pp.1564–1583, 1992
[69] J. Lou, S. Allameh, T. Buccheit and W. O. Soboyejo, “An investigation of the effects of thickness on mechanical properties of LIGA nickel MEMS structures”, Journal of Materials Science, vol. 38, no. 20, pp.4129–4135, 2003
[70] C.-M. Cheng and R.-H. Chen, “Experimental investigation of fabrication properties of electroformed Ni-based micro mould inserts”, Microelectronic Engineering, vol. 75, pp.423–432, 2004
[71] L. L. Chu, L. Que and Y. B. Gianchandani, ” Temperature coefficients of material properties for electrodeposited MEMS”, Proc. of MEMS’01, pp.68–71, 2001
[72] J. Aktaa, J. Th. Reszat, M. Walter, K. Bade and K. J. Hemker, “High cycle fatigue and fracture behavior of LIGA nickel”, Scripta Materialia, vol. 52, pp.1217–1221, 2005
[73] H. D. Espinosa and B. C. Prorok, “Size effects on the mechanical behavior of gold thin films”, Journal of Materials Science, vol. 38, no. 20, pp.4125–4128, 2003
[74] C.-W. Baek, Y.-K. Kim, Y. Ahn and Y.-H. Kim, “Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures”, Sensors and Actuators A, vol. 117, pp.17–27, 2005
[75] J. W. Dini, Electrodeposition: the materials science of coatings and substrates, Noyes Publications, New Jersey, 1992
[76] M. Bartek and R. F. Wolffenbuttel, “Dry release of metal structures in oxygen plasma: process characterization and optimization”, J. Micromech. Microeng., vol. 8, pp.91–94, 1998
[77] T. P. Moffat, D. Wheeler, W. H. Huber and D. Josell, “Superconformal electrodeposition of copper”, Electrochemical and Solid-State Letters, vol. 4, pp.C26–C29, 2001
[78] D. Josell, B. Baker, C. Witt, D. Wheeler and T. P. Moffat, “Via filling by electrodeposition superconformal silver and copper and conformal nickel”, Electrochemical and Solid-State Letters, vol. 149, pp.C637–C641, 2002
[79] R. Birringer, “Nanocrystalline materials,” Materials Science and Engineering, A117, pp.33–43, 1989
[80] K. Lu and M.L. Sui, “Thermal expansion behaviors in nanocrystalline materials with a wide grain size range,” Acta Metallurgica Materialia, vol. 43, no. 9, pp.3325–3332, 1995
[81] H. Zhang and B.S. Mitchell, “Thermal expansion behavior and microstructure in bulk nanocrystalline selenium by thermomechanical analysis,” Materials Science and Engineering, A270, pp.237–243, 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.王精文、范凱棠(2006)。「組織發展技術在公務人員核心價值推動之應用」。考銓季刊,47,44-65。
2. 2.王餘厚(1997)。概論激勵士氣。人事月刊,42 卷,3 期, 48-57 頁。
3. 3.江大樹(2005)。〈從創新到執行力:政府改造的變革與困境〉。《政治科學論叢》26:79-128。台北:台灣大學。
4. 6.呂明泰(2006a)。〈公務人員退休所得合理化改革方案中幾個受關注問題的剖析〉。《公務人員月刊》116,18-31。台北:銓敘部。
5. 7.呂明泰(2006b)。〈公務人員退休法修正草案簡介〉。《公務人員月刊》118,6-12。台北:銓敘部。
6. 9.何清欽(1979)。教師工作士氣之探討。教育文粹,8 期,65-75頁。
7. 12.施能傑(2006)。「文官體系能力與政府競爭力:策略性人力資源管理觀點」。東吳政治學報,23,1-46,台北:東吳大學政治學系。
8. 13.孫本初(2000)。〈多元評估模式探討之研究〉。《人事月刊》183,8-20。台北:人事局。
9. 15.周麗芳(2002b)。<公務人員展期年金之設計與規劃>。《公務人員月刊》第68 期: 4-10頁。
10. 16.吳容明(2006)。從公務人員退休相關數據談退休制度改革。 研習論壇月刊: 第65期:1-19頁。
11. 18.洪雲霖(1997)。公務士氣激勵與政府競爭力。人事月刊,24 卷,3期, 58-68 頁。
12. 20.郝鳳鳴(2004)。勞工退休金條例規範基礎分析。月旦法學:第112期:173頁。2004年9月。
13. 23.陳聽安(2002)。「公務人員退撫制度之重新定位」。考銓季刊,31,54-65。
14. 26.陳正料(2007)。全球化與多元民主社會下政府推動行政改革方案之公平衡量研究:以公務人員退休八五制改革方案為例。考銓季刊,第50期,頁104-130。台北:考試院。
15. 28.張邦良(2006)。「符合社會公義退撫制度才能持久永續:兼評公務人員退休法修正草案」。公務人員月刊,118,2-5。
 
系統版面圖檔 系統版面圖檔