跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭丞志
研究生(外文):Cheng-Chih Cheng
論文名稱:奈米碳管場發體在可撓性碳布上之成長及特性研究
論文名稱(外文):Growth and Characterization of CNT Field Emitters on a Flexible Carbon Cloth
指導教授:吳宗信吳宗信引用關係
指導教授(外文):Jong-Shinn Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:96
中文關鍵詞:場發射奈米碳管可撓性碳布
外文關鍵詞:Field EmissionCarbon NanotubeFlexibleCarbon Cloth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管場發射顯示器是一種跟陰極射線管顯示器比較薄的平面顯示器。有較低的功率消耗,及預計成為下一個世代新且大的平面顯示器。成長在碳布上的奈米碳管有較低的操作電場是由於碳布的編織幾何分布。所以奈米碳管成長在可撓性碳布上在微電子工業有實際且方便的應用。在此篇論文中,我們比較利用化學氣相沈積法成長在碳布上的催化劑奈米顆粒及奈米碳管,在不同的前處理及成長條件下,如前處理時間、溫度、氣體流量以及成長時的時間、溫度、氣體流量時的直徑尺寸大小及場發射特性。在我們的實驗裡,成長過程使用乙烯當成製程氣體,氫氣及氮氣為稀釋或承載氣體,鎳為催化劑,鈦及鋁當緩衝層。實驗結果顯示,催化劑奈米顆粒的尺寸大小跟奈米碳管的直徑大小相同而且大小尺寸差異滿明顯的,最大的碳管尺寸為160 nm,最小為12nm。根據此實驗結果,可以藉由控制催化劑奈米顆粒的尺寸大小來形成想要的直徑尺寸的奈米碳管。另外,我們也發現當我們加入鋁當緩衝層時,形成在碳布上的催化劑奈米顆粒及奈米碳管尺寸比沒有加入緩衝層及加入鈦金屬為大。因此,可以藉由加入不同的緩衝層來控制奈米碳管的直徑尺寸。根據場發射的結果顯示,場發特性跟不同的前處理及成長的參數有關。此篇論文中最佳的起始電壓在時間30分鐘、溫度550℃、氫氣流量100 sccm氮氣流量500 sccm時為8.2 V/μm,此值遠低於Jo, S. H et發表約0.34 V/μm。此差異可能是因為催化劑成長的不同,此論文是用熱蒸鍍的方式,Jo, S. H et是用濺鍍的方式。
Carbon nanotube based field emission displays (CNT-FEDs) are generally described as devices for thin flat panel display compared with Cathode Ray Tube (CRT), having low power consumption and be expected to become new and large flat panel display in next generation. The lower operating electric field of carbon nanotubes grown on carbon cloth is due to geometrical configuration of woven nature of carbon cloth. So the carbon nanotubes grown on flexible carbon cloth has practical and convenient applications of microelectronics. In this thesis, we compare size and field emission characteristics of catalyst nano particle with carbon nanotube grown on carbon cloth under the various conditions, pretreated time, temperature, gas flux, and growth time, temperature and gas flux by thermal chemical vapor deposition. The growth process uses ethylene (C2H4) as the process gas, hydrogen (H2) and nitrogen (N2) as the carried/ diluted gas, nickel as catalyst and titanium (Ti), aluminum (Al) as buffer layers in our experiment. The experiment results reveal that the diameters of catalyst nano particle are the same as of carbon nanotube and the size difference of CNTs growth on carbon cloth is evident. The biggest size of CNT is about 160 nm, and the smallest size of CNT is 12 nm. According to the results, we can grow the diameter size of carbon nanotube that we want by controlled the size of catalyst nano particle. In addition, we also find that the catalyst nano particle and carbon nanotube formed on the carbon cloth with deposited nickel are larger than the titanium as buffer layer, but it is smaller than the aluminum as buffer layer. So we can control the diameter size of carbon nanotube by adding different buffer layer. According to the field emission results, it reveals that the emission characteristics are relation to various pretreated and growth parameters. The best turn on field of carbon nanortubes growth on carbon cloth in this thesis is near 8.2 V/μm in conditions, temperature: 550℃, H2 flux: 100 sccm, N2 flux: 500 sccm, time: 30 min, and is lower than results that Jo, S. H et. al. published in 2004. Maybe the difference is due to methods for catalyst deposited and type of catalyst. In this thesis, we deposited catalyst by using thermal evaporator, and it is by sputter deposition in that published.
摘要 I
ABSTRACT II
致謝 IV
TABLE OF CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
NOMENCLATURE XIII
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.1.1 History of Vacuum Microelectronics 1
1.1.2 Applications of Vacuum Microelectronics 1
1.1.3 Theoretical Background 3
1.1.4 Structures for Field Emission Displays 5
1.2 Literature Survey 7
1.3 Specific Objectives of the Thesis 9
CHAPTER 2 INTRODUCTION TO CARBON NANOTUBES 10
2.1 History of Carbon Nanotubes 10
2.2 Applications of Carbon Nanotubes 10
2.3 Structure and Property of Carbon Nanotubes 11
2.3.1 Structure 11
2.3.2 Property 12
2.4 Synthesize Methods of Carbon Nanotubes 12
2.4.1 Arc Discharge 12
2.4.2 Laser Vaporization 13
2.4.3 Chemical Vapor Deposition 13
2.5 Growth Mechanism of Carbon Nanotubes 14
CHAPTER 3 EXPERIMENTAL METHODS 15
3.1 Experimental Facility 15
3.1.1 Thermal Chemical Vapor Deposition (Thermal CVD) 15
3.2 Experimental Instrumentation 15
3.2.1 Field Emission Scanning Electron Microscope (SEM) 15
3.2.2 Field Emission System 16
3.2.3 Contact Angle System 16
3.2.4 Raman Spectrometer 16
3.3 Experimental Procedures 17
CHAPTER 4 PRELIMINARY RESULTS AND DICUSSION 18
4.1 Test Conditions 18
4.2 Results and Dicussion 18
4.2.1 The Morphology of Catalyst Nano Particle and Carbon Nanotube for Various Pretreated and Growth Conditions 18
4.2.1.1 The Morphology of for Catalyst Nano Particle Various Pretreated Conditions 18
4.2.1.1.1 Effects of Processing Time 18
4.2.1.1.2 Effects of H2 Concentration 19
4.2.1.1.3 Effects of N2 Concentrations 19
4.2.1.1.4 Effects of Temperature 20
4.2.1.2 The Morphology of Carbon Nanotube for Various Pretreated Conditions 20
4.2.1.2.1 Effects of Processing Time 20
4.2.1.2.2 Effects of H2 Concentration 21
4.2.1.2.3 Effects of N2 Concentration 21
4.2.1.2.4 Effects of Processing Temperature 22
4.2.1.3 The Morphology of Carbon Nanotube for Various Growth Conditions 23
4.2.1.3.1 Effects of Processing Time 23
4.2.1.3.2 Effects of H2 Concentration 23
4.2.1.3.3 Effects of N2 Concentration 23
4.2.1.3.4 Effects of Processing Temperature 24
4.2.1.4 The Morphology of Comparison for Various Carbon Cloth and Silicon Substrates 24
4.2.2 Diameter Size Comparison of Catalyst Nano Particle and Carbon Nanotube for Various Pretreated and Growth Conditions 24
4.2.2.1 Comparisons for Various Pretreated Conditions 24
4.2.2.2 Comparisons for Various Growth Conditions 25
4.2.2.3 Comparison for Various Carbon Cloth and Silicon Substrates 26
4.2.3 Field Emission Characteristics of Carbon Nanotubes Growth on Carbon Cloth 26
4.2.3.1 Comparisons for Various Pretreated Conditions 26
4.2.3.2 Comparisons for Various Growth Conditions 28
4.2.3.3 Comparison for Various Carbon Cloth and Silicon Substrates 29
4.2.4 Raman Shift Results of Carbon Nanotubes Growth on Carbon Cloth 30
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 31
5.1. Summary 31
5.2. Recommendations For Future Work 32
REFERENCES 33
APPENDIX 35
[1] Shieh, J.-L, Field Emission Vacuum Microelectronic Devices, UMI, Michigan, 1992.
[2] Bardeen, J. and Brattain, W. H., Phys. Rev., 74,230, 1948.
[3] Fowler, R. H. and Nordheim, L., Mathematical and Physical Charater, 119, 173, 1928.
[4] Spindt, C. A., Brodie, I., Humphrey, L., and Westerberg, E. R., J. Appl. Phys., 47, 5248
1976.
[5] Choi, W.-B., Chung, D.-S., Kang, J.-H., Kim, H.-Y., Jin, Y.-W., Han, I.-T., Lee, Y.-H., Jung, J.-E., Lee, N.-S., Park, G.-S., and Kim, J.-M. Appl. Phys. Lett., 75, 3129, 1999.
[6] Iijima, S. Nature, 354, 56, 1991.
[7] Jo, S. H., Wang, D. Z., Huang, J. Y., LiK, W. Z., Ren, Z. F., Appl. Phys. Lett., 85, 810,
2004.
[8] Bonard, J.-M., Salvetat, J.-P., Stckli, T., de Heer, W. A., Forr, L. and Chatelain, A., Appl. Phys. Lett., 73, 918, 1998.
[9] Umnov, A. G. and Mordkovich, V. Z., Appl. Phys. A: Mater. Sci. Process., 73, 301, 2001.
[10] Umnov, A. G., Shiratori, Y. and Hiraoka, H., Appl. Phys. A: Mater. Sci. Process., 77, 159,
2003.
[11] Jo, S. H., Banerjee, D. and Ren, Z. F., Appl. Phys. Lett., 85, 1407, 2004.
[12] Zeng, B., Xiong, G., Chen, S., Wang, W., Wang, D. Z., and Ren, Z. F., Appl. Phys. Lett., 90, 033112, 2007.
[13] Zhi, C.-Y., Bai, X.-D., and Wang, E.-G., App.Phy.Lett., 81, 1960, 2002.
[14] Ahn, K. S., Kim, J. S., Kim, C. O., Hong, J. P. Carbon 41, 2481, 2003.
[15] Juan, C.-P., Tsai, C.-C., Chen, K.-H., Chen, L.-C., and Chend, H.-C., Jap. J. of Appl. Phy., 44, 8231, 2005.
[16] Kyung, S.-J., Park, J.-B., Lee, J.-H., and Yeom, G.-Y., J. of Appl. Phy., 100, 124303, 2006.
[17] Tsai, S.-H., Chao, C.-W., Lee, C.-L., and Shih, H.-C., Appl. Phys. Lett. 74, 3462, 1999.
[18] Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.M., Kern, K., Appl. Phys. Lett., 76, 2071, 2000.
[19] Jeong, S.-H., Hwang, H.-Y., Lee, K.-H. Jeong, Y., Appl. Phys. Lett., 78, 2052, 2001.
[20] Huang, Z. P., Wang, D.Z., Wen, J.G., Sennett, M. H., Gibson, Z. F., Ren, Appl. Phys., A Mater. Sci. Process., 74, 387, 2002.
[21] Hyung S. U., Ko, S. W., Lee, J. D., Diamond & Related Materials, 14, 850, 2005.
[22] Chang, S.-C., Lin, T.-C., Li, T.-S., Huang, S.-H., Microelectron. J, 10, 1016, 2008.
[23] Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220, 1992.
[24] Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., Science of fullerenes and carbon nanotubes, Academic Press, San Diego, 1996.
[25] Smalley, R. E. et al, laboratory in university of Rice, 1995.
[26] Thess, A., et al, Science, 273, 483, 1996.
[27] Saito, R., Dresselhaus, G., Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
[28] Fan, S., ChaplineM, G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Science, 283, 512, 1999.
[29] Sinnott, S. B., Andrews, R. D., Qian., A. M., Mao, Z., Dickey, E. C., and Derbyshire, F., Chem. Phys. Lett., 315, 25, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊