跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王毓婷
研究生(外文):Yu-Ting Wang
論文名稱:地下水二維污染歷程重建:未來連續正規化法
論文名稱(外文):Two-dimensional Groundwater Contamination Source Reconstruction : Future Sequential Regularization Method
指導教授:葉弘德葉弘德引用關係
指導教授(外文):Hund-Der Yeh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:47
中文關鍵詞:地下水釋放歷程逆向問題正規化
外文關鍵詞:GroundwaterRelease historyInverse problemRegularization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
當一個污染源釋放污染物進入地下水中,經由傳流及延散作用,會造成地下水污染。當一個場址發現地下水有污染,且其已知污染源位置上曾更替過數個工廠或工廠的經營者時,污染源釋放歷程的重建,可以幫助我們得知地下水中,污染源釋放的濃度歷程,並可釐清各可能責任團體之責任歸屬問題。目前許多地下水污染源歷程重建的方法,只能求得由指數函數所代表的歷程,在重建激變性型態如三角形或階梯形的釋放歷程會產生顯著的誤差。
本研究利用未來連續正規化法(Future-sequential regularization method, FSRM),針對一個地下水的污染場址作採樣分析,結合地下水污染傳輸控制方程式之基本解,可以重建污染釋放歷程。FSRM可將污染傳輸方程式,由病態的問題(ill-posed problem)轉換成小康構成問題(well-posed problem),使分析結果滿足穩定狀態且有單一解。我們利用在一個監測井所量得的濃度時間分佈數據,逆推過去文獻提及的地下水二維污染案例;此外,也重建三角形及階梯形的釋放歷程案例。
為了模擬現地可能之情形,本研究分析的案例,除了時間性數據的二維面源傳輸案例,另外含水層可以為有限或無限寬度。本研究除了分析三角及階梯型態的污染源對重建結果的影響,同時也針對幾個問題進行探討,分別是非等間距時間的採樣數據、採樣濃度量測誤差、及其他方法重建歷程結果之比較等。
As a site is found to have groundwater contamination, the reconstruction of the source release history can provide helpful forensic information to identify the responsible parties at a known source location since the owner of the contaminated source changes several times. The objective of this study is to use a full-estimation technique and Future-sequential regularization method (FSRM) incorporated with a fundamental solution of the groundwater transport equation to recover the source release history of a groundwater contamination. This method can transform the plume release function from the ill-posed problem into a well-posed one with a solution satisfying the unique and stable conditions. A lectured two-dimensional (2-D) groundwater contamination case is used to assess the performance of the source identification. In addition, we used two different source release functions (namely the triangle function and the step function) to evaluate the effectiveness of FSRM in recovering the release history.
The FSRM is capable of recovering a release history based on the concentration measurements sampled from a monitoring well. With an appropriate value of regularization parameter, FSRM is robust in recovering the optimal release history in terms of the triangle or step source release function. In order to have better representation to the field conditions, the problems of two dimensional plumes are considered to originate from an area source and the aquifer can be of finite or infinite width. Besides, this thesis also investigates the problems of observation data with non-uniform time intervals, data with measurement errors, and comparisons with the solutions obtained by other inverse methods.
中 文 摘 要 I
ABSTRACT III
致謝 ....V
LIST OF TABLES IX
LIST OF FIGURES .X
NOTATION .. XI
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 LITERATURE REVIEW 3
1.2.1 Direct approaches 3
1.2.2 Analytical solution and regression approaches .5
1.2.3 Probabilistic and geostatistical simulation approaches 6
1.2.4 Optimization approaches ..7
1.3 OBJECTIVES ...8
CHAPTER 2 METHODS ....9
2.1 ADVECTION-DISPERSION EQUATION 9
2.2 ANALYTICAL MODEL 10
2.3 SOURCE RELEASE FUNCTIONS ..12
2.4 CONTAMINATION CONCENTRATION 13
2.5 FUTURE-SEQUENTIAL REGULARIZATION METHOD ..14
2.6 CHOICE OF REGULARIZATION PARAMETER IN FSRM ..18
2.7 CUBIC SPLINE .19
2.8 MEASUREMENT ERRORS .19
CHAPTER 3 CONCENTRATION DATA ..21
3.1 MEASURED CONCENTRATIONS .21
3.2 SAMPLING CONCENTRATION DATA .21
CHAPTER 4 CASE STUDIES AND RESULTS .23
4.1 TWO-DIMENSIONAL SOURCE RECOVERY ...23
4.2 SCENARIO 1: RECOVERING RELEASE HISTORY WITH FSRM 24
4.2.1 Sampling time with a 7 day interval 24
4.2.2 Sampling time with 1 day and 3 day interval ..25
4.3 SCENARIO 2: NONUNIFORM SAMPLE DATA AND CUBIC SPLINE INTERPOLATION 27
4.4 SCENARIO 3: MEASUREMENT ERRORS .28
4.5 SCENARIO 4: FIVE OTHER METHODS FOR THE SOURCE RECOVERY 29
CHAPTER 5 CONCLUSIONS 32
REFERENCES ...34
Amato, U.; Hughes, W. Maximum entropy regularization of Fredholm integral equations of the first kind. Inverse problems. 1991, 7, 793-808.
Aster, R.C.; Borchers, B.; Thurber, C.H. Parameter estimation and inverse problems. Amsterdam, 2005, Elsevier Academic Press.
Atmadja, J.; Bagtzoglou, A.C. State of the Art Report on Mathematical Methods for Groundwater Pollution Source Identification. Environ. Forens. 2001, 2, 205-214.
Beck, J.V.; Blackwell B.; St. Charles, Jr., C. R. Inverse Heat Conduction. New York, 1985, Wiley-Interscience.
Boano, F.; Revelli, R.; Ridolfi, L. Source identification in river pollution problems: a geostatistical approach. Water Resour. Res. 2005, 41, W07023, doi:10.1029/2004WR003754.
Butera, I.; Tanda, M.G. A geostatistical approach to recover the release history of groundwater pollutants. Water Resour. Res. 2003, 39(12), 1372, doi:10.1029/2003WR002314.
Chen, C.F.; Yeh, H.D. Two-dimensional Plume Source Reconstruction for Groundwater Contamination Based on Simulated Annealing. J of Environ. Eng. Manage. 2006, 16(6), 387-392.
Hansen, P.C. Numerical tools for analysis and solution of Fredholm integral equations of the first kind. Inverse Problems. 1992, 8, 849-872.
Lamm, P.K. Future-sequential regularization methods for ill-posed Volterra equations. Applications to the inverse heat conduction problem. J. Math. Anal. Apple. 1995, 195(2), 469–494.
Lawson, C.L.; Hanson, R.J. Solving least squares problems. 1995, SIAM, Philadelphia.
Leng, C.H.; Yeh, H.D. Aquifer Parameter Identification Using the Extended Kalman Filter. Water Resour. Res. 2003, 39(3), 1062, doi:10.1029/2001WR000840.
Linz, P. Analytical and Numerical Methods for Volterra Equations. 1985, SIAM, Philadelphia.
Newman, M.; Hatfield, K.; Hayworth, J.; Rao, P.S.C.; Stauffer, T. A hybrid method for inverse characterization of subsurface contaminant flux. J. Contam. Hydrol. 2005, 81, 34-62
Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran. The Art of Scientific Computing. Second Edition. New York, 1992, Cambridge University Press.
Sayeed, M.; Mahinthakumar, G. K. Efficient Parallel Implementation of Hybrid Optimization Approaches for Solving Groundwater Inverse Problems. J. Comput. Civ. Eng., ASCE, 2005, 19(4), 329-340
Skaggs, T.H.; Kabala, Z.J. Recovering the release history of a groundwater contaminant. Water Resour. Res. 1994, 30(1), 71-79.
Skaggs, T.H.; Kabala, Z.J. Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility. Water Resour. Res. 1995, 31(11), 2669-2673.
Skaggs, T.H.; Kabala, Z.J. Limitations in recovering the history of a groundwater contaminant plume. J. Contam. Hydrol. 1998, 33, 347-359.
Stark, P.B.; Parker, R.L. Bounded-variable least-squares: An algorithm and applications. Comput. Stat. 1995, 10(2), 129-141.
Sun, A. Y.; Painter, S. L.; Wittmeyer, G. W. A constrained robust least squares approach for contaminant release history identification. Water Resour. Res. 2006, 42, W04414, doi:10.1029/2005WR004312.
Sun, A. Y.; Painter, S. L.; Wittmeyer, G. W. A robust approach for iterative contaminant source location and release history recovery. J. Contam. Hydrol. 2006, 88, 181-196.
Ulrych, T. J.; Woodbury, A. D. Extensions to minimum relative entropy inversion for noisy data. J. Contam. Hydrol. 2003, 67, 13-25.
Woodbury, A.D.; Ulrych, T.J. Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant. Water Resour. Res. 1996, 32(9), 2671-2681.
Woodbury, A.D.; Sudicky, E.; Ulrych, T.J.; Ludwig, R. Three dimensional plume source reconstruction using minimum relative entropy inversion. J. Contam. Hydrol. 1998, 32, 131-158.
Yeh, G.H. AT123D: Analytical transient one-, two-, and three-dimensional simulation of waste transport in the aquifer system, 1981, Report ORNL-5602, Oak Ridge, Tennessee.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top