(3.238.7.202) 您好!臺灣時間:2021/03/03 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡靖宜
論文名稱:鋁水解物種對腐植酸混凝行為之影響
論文名稱(外文):Effects of hydrolyzed Al species on coagulation of humic acid
指導教授:黃志彬黃志彬引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:混凝天然有機物PAClAl13Wet SEM
外文關鍵詞:coagulationNOMPAClAl13Wet SEM
相關次數:
  • 被引用被引用:12
  • 點閱點閱:381
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:1
混凝劑中鋁水解物種受溶液pH之影響極大,且鋁水解物種型態分佈會影響混沉移除有機物之效能。本研究中以人工配製之腐植酸溶液進行混凝試驗,探討二種不同聚合鋁(Al13)含量為7%及96%之聚氯化鋁(PACl)混凝劑對腐植酸之混沉移除成效,並使用傅立葉轉換紅外線光譜(FTIR)及固態鋁核磁共振光譜(Solid-state 27Al NMR)分析混凝過程中形成之膠羽,了解腐植酸表面官能基與鋁物種間相互作用之特性,同時以溼式SEM (Wet SEM)觀察形成膠羽之構造型態。
研究結果顯示,在不控制pH條件下,PACl-Al13混凝移除腐植酸所需之加藥量較PACl-1少。在酸性條件下(pH 4~6),混沉移除腐植酸之效能為最佳,此時腐植酸與單體鋁或聚合鋁進行錯合作用及電性中和反應;在中性偏酸性條件下(pH 6),高聚合鋁含量之PACl混凝劑達到最佳混凝效能所需之加藥量較少,此時之混凝機制以電性中和為主,且參與反應之鋁物種主要是與腐植酸上之羧基(-COOH)反應,低聚合鋁含量之PACl其膠羽呈線狀,而高聚合鋁含量PACl之膠羽同樣成線狀但彎曲度較大;當在鹼性條件(pH 8)時,兩種PACl之混凝效能均低落,此時需增加高聚合鋁含量之PACl加藥量,才能增加腐植酸之移除,而此時腐植酸與鋁物種作用之官能基主要為酚基(-OH),同時亦有少量羧基(-COOH)參與反應,此時因有強大的電性中和作用導致混凝之膠羽結構緊密近似球狀。此外,Solid-state 27Al NMR分析混凝後膠羽結果顯示,PACl-1及PACl-Al13中部份Al13會與腐植酸反應而被裂解成寡聚體鋁。
中文摘要......…...……………………………………………..............………I
英文摘要......…...………………………………………….......……………..II
誌 謝......…...………………………………………………...................III
目 錄…........…...………………………………………………….........IV
圖 目 錄.....…………………………………………………….……......... VI
表 目 錄….......…...……………………………………………………...VIII

第一章 前言……………………………..………………………….......- 1 -
1-1 研究背景…………………………..……………………………- 1 -
1-2 研究目的………………………………………………………..- 3 -
第二章 文獻回顧………………………………………………….........- 4 -
2-1 水中有機物之特性及分類……………………………………..- 4 -
2-1-1 水中有機物之來源……………………………………...- 4 -
2-1-2 天然有機物之分類……………………………………...- 5 -
2-2 鋁之水解化學…………………………………………………- 12 -
2-2-1 鋁水解聚合特性……………………………………….- 12 -
2-2-2 Al13之生成機制……………………………………..….- 15 -
2-2-3 Al13之穩定性…………………………………………...- 17 -
2-3 有機物之鋁化學混凝……………………………………..…..- 21 -
2-3-1 化學混凝機制…………………………………….........- 21 -
2-3-2 有機物混凝之影響因子………………………….........- 23 -
2-3-3 Al13與有機物之混凝作用……………………………...- 26 -

第三章 實驗材料、方法及流程………………………………….......- 30 -
3-1 實驗材料………………………………………………………- 30 -
3-2 實驗設備及分析儀器………………………………………....- 34 -
3-3 研究架構………………………………………………………- 37 -
3-4 實驗方法與步驟……………………………………………....- 39 -
3-4-1 混凝劑之鋁型態分析…………………………….........- 39 -
3-4-2 混凝試驗………………………………………….........- 41 -
3-4-3 鋁物種與腐植酸分子間之作用分析…………….........- 42 -
3-4-4 膠羽型態觀察…………………………………….........- 43 -
第四章 結果與討論…………………………………………………...- 44 -
4-1 不同純度PACl混凝劑對腐植酸混凝效能之影響…………...- 44 -
4-1-1 pH對不同純度PACl混凝效能之影響…………….….- 44 -
4-1-2 加藥量對不同純度PACl混凝效能之影響…………...- 47 -
4-2 pH對鋁物種與腐植酸作用之影響……………………….....- 59 -
4-3 不同純度PACl混凝腐植酸之膠羽結構……………………...- 61 -
4-4 PACl混凝處理腐植酸之混凝機制……………………….....- 65 -
第五章 結論…………………………………………………………...- 68 -
參考文獻………………………………………………………………...- 69 -
Akitt, J. W. and Elders, J. M., Multinuclear magnetic resonances studies of the hydrolysis of aluminum (III). VIII. Base hydrolysis monitored at very high magnetic field, J. Chem. Soc. Daltion Trans., 347-357, 1988.
Akitt, J. W., Greenwood, N. N., Khandelwal, B. L. and Lester, G. D., 27Al nuclear magnetic resonance studies of the hydrolysis and polymerization of the hexa-aqua-aluminum (III) cation, J. Chem. Soc. Daltion Trans., 604-608, 1972.
AWWARF, Characterization of natural organic matter and its relationship to treatability, AWWA Research Foundation and American Water Works Association, Denver, USA, 1993.
Axelos, M. A. V., Tchoubar, D. and Jullien, R., X-ray scattering functions of fractal structures: comparison between simulations and experiments, J. Phys., 47 (10): 1843-1847, 1986.
Baes, C. F. and Mesmer, R. E., The Hydrolysis of Cations, John Wiley & Sons, New York, 1976.
Bell-Ajy, K., Abbaszadegan, M., Ibrahim, E., Verges, D. and LeChevallier, M., Conventional and optimized coagulation for NOM removal, JAWWA., 92 (10): 44-58, 2000.
Benefield, L. D., Joseph, J. F. and Weand, B. L., Process Chemistry for Water and Wastewater Treatment, Prentice-Hall Inc., N. J., 1982.
Bertsch, P. M., Conditions for Al13polymer formation in partially neutralized aluminum solutions, Soil Sci. Soc. Am. J., 51 (3): 825-828, 1987.
Bertsch, P. M., Layton, W. J. and Barnhisel, R. I., Speciation of hydroxyl-aluminum solutions by wet chmical and aluminum-27 NMR methods, Soil Sci. Soc. Am. J., 50 (6): 1449-1454, 1986b.
Bertsch, P. M., Thomas, G. W. and Barnhisel, R. I., Characterization of hydroxyl-aluminum solutions by aluminum-27 nuclear magnetic resonance spectroscopy, Soil Sci. Soc. Am. J., 50 (3): 825-830, 1986a.
Cheng, W. P., Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants, Chemosphere, 47: 963–969, 2002.
Collins, M. R., Amy, G. L. and Steelink, C., Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment, Environ. Sci. Technol., 20: 1028–1032, 1986.
Dempsey, B. A., Ganho, R. M. and O’Melia, C. R., The coagulation of humic substances by means of aluminum salts, JAWWA., 76 (4): 141–150, 1984.
Derjaguin, B. V. and Landau, L. D., Theory of stability of strong charge lyophobioc sols and of the adhesion of strong charged particles in solutions of electrolytes, Acta Physicochimca URSS, 14: 633-662, 1941.
Duan, J. and Gregory, J., Coagulation by hydrolyzing metal salts, Adv. Colloid Interface Sci., 100–102: 475–502, 2003.
Edzwald, G. A. and Amirtharajah, A., Removing color caused by humic acids, JAWWA., 77: 50-57, 1985.
Edzwald, J. K. and Tobiason, J. E., Enhanced coagulation: using requirement and a broader view, Wat. Sci. Technol., 40 (9): 63-70, 1999.
Edzwald, J. K., Coagulation in drinking water treatment: particles, organics and coagulants, Wat. Sci. Technol., 27 (11): 21-35, 1993.
Exall, K. N. and Vanloon, G. W., Using coagulants to remove organic matter, JAWWA., 92 (11): 93–102, 2000.
Fetting, J. and Ratnaweera, H., Influence of dissolved organic matter on coagulation/flocculation of wastewater by alum, Wat. Sci. Technol., 27 (11): 103-112, 1993.
Gregor, J. E., Nokes, C. J. and Fenton, E., Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminum coagulation, Wat. Res., 31 (12): 2949-2958, 1997.
Gregory, J., The role of colloid interactions in solid-liquid separation, Wat. Sci. Technol., 27 (10): 1-17, 1993.
Hahn, H. H. and Stumm, W., Kinetics of coagulation with hydrolyzed aluminum, J. Colloid Interface Sci., 28: 133, 1968.
Hall, E. S. and Packham, R. F., Coagulation of organic color hydrolyzing coagulant, JAWWA., 57: 1149-1166, 1965.
Hinrich, L. B., Brian, L. M. and George, A. O., Soil Chemistry, John Wiley & Sons, New York, 1985.
Hiradate, S. and Yamaguchi, N., Chemical species of Al reacting with soil humic acids, J. Inorg. Biochem., 97 (1): 26-31, 2003.
Howe, F. R., Lu, X. Q., Hook, J. and Johnson, W. D., Reaction of aquatic humic substances with aluminium: a 27Al NMR study, Mar. Freshwater Res., 48: 377–383, 1997.
Howe, K. J. and Clark, M. M., Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters, Environ. Sci. Technol., 36: 3571-3576, 2002.
Hu, C. Z., Liu, H. J., Qu, J. H., Wang, D. S. and Ru, J., Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control, Environ. Sci. Technol., 40: 325-331, 2006.
Hundt, T. R. and O’Melia, C. R., Aluminum-fulvic acid interactions: mechanisms and applications, JAWWA., 80: 176-186, 1988.
Jansen, B., Nierop, K. G. J. and Verstraten, J. M., Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios, Geoderma, 113 (3-4): 323-340, 2003.
Jarusutthirak, C., Amy, G.. and Croue, J. P., Fouling Characteristics of Wastewater Effluent Organic Matter (EfOM) Isolates on NF and UF Membranes, Des., 145: 247-255, 2002.
Johansson, G., On the crystal structures of some basic aluminum salts, Acta Chem. Scand., 14: 771, 1960.
Johansson, G., The crystal structure of [Al2(OH)2(H2O)8](SO4)2•2H2O and [Al2(OH)2(H2O)8](SeO4)2•2H2O, Acta Chem. Scand., 16: 403, 1962.
Joseph, G.. J., Jack, D. and Douglas, M. O., Selected processes for removing NOM: an overview, JAWWA., 87 (1): 64-77, 1995.
Katsoufidou, K., Yiantsios, S. G. and Karabelas, A. J., A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling, J. Mem. Sci., 266 (1-2): 40-50, 2005.
Katz, A., Bentur, A. and Kovler, K., A novel system for in-situ observations of early hydration reactions in wet conditions in conventional SEM, Cement and Concrete Res., 37: 32-37, 2007.
Kazpard, V., Lartiges, B. S., Frochot, C., d’Espinose de la Caillerie, J. B., Viriot, M. L., Portal, J. M., Gorner, T. and Bersillon, J. L., Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13 polycations, Wat. Res., 40: 1965-1974, 2006.
Kerven, G. L., Larsen, P. L. and Blamey, F. P. C., Detrimental effects of sulfate on the formation of the Al13 tridecameric polycation in synthetic soil solutions, Soil Sci. Soc. Am. J., 59 (3): 765-771, 1995.
Kimura, K., Yamamura, H. and Watanabe, Y., Irreversible Fouling in MF/UF Membranes Caused by Natural Organic Matters (NOMs) Isolated from Different Origins, Sep. Sci. Technol., 41 (7): 1331-1344, 2006.
Kloprogge, J. T., Seykens, D., Geus, J. W. and Jansen, J. B. H., Temperature influence on the Al13 complex in partially neutralized aluminum solutions: A 27Al nuclear magnetic resonance study, J. Non-Cryst. Solids, 142: 87-93, 1992b.
Kloprogge, J. T., Seykens, D., Jansen, J. B. H. and Geus, J. W., A 27Al nuclear magnetic resonance study on the optimization of the development of the Al13 polymer, J. Non-Cryst. Solids, 142: 94-102, 1992a.
Lamer, V. K. and Healy, T. W., Adsorption-flocculation reactions of macro-molecules at the solid-liquid interface, Pure Appl. Chem., 13: 112, 1963.
Lamer, V. K., Coagulation symposium introduction, J. Colloid Interface Sci., 19: 291, 1964.
Letterman, R. D., Water Quality and Treatment, 5thed., American Water Works Association, 1999.
Lu, G. G., Qu, J. H. and Tang, H. X., The electrochemical production of highly effective polyaluminum chloride, Wat. Res., 33: 807-813, 1999.
Lu, X. Q., Hanna, J. V. and Johnson, W. D., Source indicators of humic substances: an elemental composition, solid state C-13 CP/MAS NMR and Py-GC/MS study, Appl. Geo., 15 (7): 1019-1033, 2000.
Lu, X. Q., Johnson, W. D. and Hook, J., Reaction of vanadate by aquatic humic substances: an ESR and 51V NMR study, Environ. Sci. Technol., 32: 2257–2263, 1998.
Lu, X. Q., Vassallo, A. M. and Johnson, W. D., Thermal stability of humic substances and their metal forms: an investigation using FTIR emission spectroscopy, J. Anal. Appl. Pyr., 43: 103–113, 1997.
Lu, X., Chen, Z. and Yang, X., Spectroscopic study of the aluminum speciation in removing humic substances by Al coagulation, Wat. Res., 33 (15): 3271–3280, 1999.
Masion, A., Thomas, F. and Tchoubar, D., Chemistry and structure of Al(OH)/organic precipitates-a small-angle X-ray-scattering study. 3. Depolymerization of the Al-13 polycation by organic ligands, Langmuir, 10 (11): 4353-4356, 1994.
Masion, A., Vilge-Ritter, A., Rose, J., Stone, W. E. E., Teppen, B. J., Rybacki, D. and Bottero, J. Y., Coagulation-flocculation of natural organic matter with Al salts: Speciation and structure of the aggregates, Environ. Sci. Technol., 34 (15): 3242-3246, 2000.
Matsui, Y., Yuasa, A., Furaya, Y. and Kamei, T., Dynamic analysis of coagulation with alum and PACl, JAWWA., 90 (10): 96–106, 1998.
Nierop, K. G. J., Jansen, B. and Verstraten, J. A., Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition, Sci. Total Environ., 300 (1-3): 201-211, 2002.
Nilge-Ritter, A., Masion, A., Boulange, T., Rybacki, D. and Bottero, J. Y., Removal of natural organic matter by coagulation-flocculation: A Pyrolysis-GC-MS study. Environ. Sci. Technol., 33: 3027-3032, 1999.
Nordstrom, D. K. and May, H. M., Aqueous Equilibrium Data for Mononuclear Aluminum Species, in The Environmental Chemistry of Aluminum, Sposito, G., Ed., CRC Press, Boca Raton, FL, 1989.
O’Melia, C. R., Becker, W. C. and Au, K. K., Removal of humic substances by coagulation, Wat. Sci. Technol., 40: 47–54, 1999.
O’Melia, C. R., Coagulation in wastewater treatment, In The Scientific Basis of Flocculation. NATO ASI Series, Ives, K. J., Eds., Sijthoff and Noordhoff, Aalphen aan den Rijn, Netherlands, 1978.
Packham, R. F., Some studies of the coagulation of dispersed clays with hydrolyzed salts, J. Colloid Interface Sci., 20: 81, 1965.
Parker, D. R. and Bertsch, P. M., Formation of the Al13 tridecameric polycation under diverse synthesis conditions, Environ. Sci. Technol., 26 (5): 914-921, 1992b.
Parker, D. R. and Bertsch, P. M., Identification and quantification of the Al13 tridecameric polycation using ferron. Environ. Sci. Technol., 26 (5): 908-913, 1992a.
Plamer, D. A. and Wesolowski, D. J., Aluminum Speciation and Equilibria in Aqueous Solution. II . The Solubility of Gibbsite in Acidic Sodium Chloride Solutions from 30℃ to 70℃, Geochim. Cosmochim. Acta, 56: 1093-1102, 1992.
Plamer, D. A. and Wesolowski, D. J., Aluminum Speciation and Equilibria in Aqueous Solution. III . Potentiometric Determination of First Hydrolysis Constant of Aluminum (III) in Sodium Chloride Solution to 125℃, Geochim. Cosmochim. Acta, 56: 1093-1102, 1992.
Rausch, M. V. and Bale, H. D., Small-angle x-ray scattering from hydrolyzed Al nitrate solutions, J. Chem. Phys., 40: 3391, 1964.
Rebhun, M. and Lurie, M., Control of organic mater by coagulation and flocs separation, Wat. Sci. Technol., 27 (11): 1-20, 1993.
Rizzo, L., Belgiorno, V., Gallo, M. and Meric, S., Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behavior of THMFP toxicity on D. magna, Des., 176: 177–188, 2005.
Rubin, A. J. and Kovac, T. W., Effects of Aluminum (III) Hydrolysis on Alum Coagulation, in Chemistry of Water Supply, Treatment, and Distribution, Rubin A. J., Ann Arbor Science Pulishers, Ann Arbor, MI, 1974.
Scheel, T., Dorfler, C. and Kalbitz, K., Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils, Soil Sci. Soc. Am. J., 71 (1): 64-74, 2007.
Sharp, E. L., Jarvis, P., Persons, S. A. and Jefferson, B., The impact of zeta potential on the physical properties of ferric-NOM flocs, Environ. Sci. Technol., 40: 3934-3940, 2006.
Shen, Y. H. and Dempsey, B. A., Synthesis and speciation of polyaluminum chloride for water treatment, Environ. Int., 24: 899–910, 1998.
Shi, B. Y., Li, G. H. and Wang, D. S., Separation of Al-13 from polyaluminum chloride by sulfate precipitation and nitrate metathesis, Sep. Purf. Technol., 54 (1): 88-95, 2007.
Shi, B. Y., Wei, Q. S. and Wang, D. S., Coagulation of humic acid: The performance of preformed and non-preformed Al species, Colloid Surf. A: Physichem. Eng. Aspects, 296 (1-3): 141-148, 2007.
Sinha, S., Yoon, Y., Amy, G. and Yoon, J., Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes, Chemosphere, 57: 1115–1122, 2004.
Sposito, G., The Environmental Chemistry of Aluminium, 2nded., CRC press, Inc., 1996.
Stevenson, F. J., Humus Chemistry: genesis, composition, reactions, 2nd ed., John Wiley & Sons, New York, 1994.
Stumm, W. and Morgan, J. J., Aquatic chemistry-chemical equilibria and rates in natural waters, 3rded., Wiley Interscience, New York, 142, 1996.
Tang, H. and Luan, Z., The differences of behavior and coagulating mechanism between inorganic polymer flocculants and traditional coagulants. In: H.H. Hahn, E. Hoffmann and H. Ødegaard, Editors, Chemical Water and Waste Water Treatment, Springer, Berlin, 83–93, 1996.
Thurman, E. and Malcolm, R., Preparative Isolation of Aquatic Humic Substances, Environ. Sci. Technol., 15: 463-466, 1981.
Thurman, E. M., Organic geochemistry of natural water, Martinus Nijhoff/ Dr. W. Junk Publisher, Dordrecht, the Netherlands, 15-17, 1985.
Van Beschoten, J. E. and Edzwald, J. K., Chemical aspects of coagulation using aluminum salts-I. Hydrolytic reactions of alum and polyaluminum chloride, Wat. Res., 24: 1519-1526, 1990a.
Van Beschoten, J. E. and Edzwald, J. K., Chemical aspects of coagulation using aluminum salts-II. Coagulation of fulvic acid using alum and polyaluminum chloride, Wat. Res., 24: 1527-1537, 1990b.
Verwey, E. J. and Overbeek, G. Th. J., Theory of the stability of lyophobic colloid, Elserier, Amsterdam, 1948.
Wang, D., Sun, W., Xu, Y., Tang, H. and Gregory, J., Speciation stability of inorganic polymer flocculant—PACl, Colloid Surf. A: Physichem. Eng. Aspects, 243: 1–10, 2004.
Water, D. N. and Heely, M. S., Ramie spectraorauous of hydrolysed aluminum (III) salts, J. Chem. Soc. Dalton Trans., 3: 243, 1977.
Yamaguchi, N., Hiradate, S. and Mizoguchi, M., Disappearance of aluminum tridecamer from hydroxyaluminum solution in the presence of humic acid, Soil Sci. Soc. Am. J., 68 (6): 1838-1843, 2004.
Zouboulis, A. I. and Traskas, G., Comparable evaluation of various commercially available aluminum-based coagulants for the treatment of surface water and for the post-treatment of urban waste water, J. Chem. Technol. Biotechnol., 80: 1136–1147, 2005.
劉會娟,高Al13含量聚合氯化鋁的電化學製備及其絮凝特性研究,中國科學院生態環境研究中心博士論文,2003年。
湯鴻霄,羥基聚合氯化鋁的絮凝型態學,環境科學學報,第18卷第1期,pp.1-10,1998年。
陳立夫,楊秋忠, ”土壤精華-腐植質”,科學月刊,第24卷,第1期, pp. 53-58,1993年。
黃俊欽,陰離子與溶劑影響電解合成聚合鋁之研究,國立成功大學化學工程研究所碩士論文,1999年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔