跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/01 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志麟
研究生(外文):Jrlin Lin
論文名稱:聚氯化鋁水解物種之混凝行為:膠體去穩定機制及膠羽形成分析
論文名稱(外文):Coagulation Behavior of Hydrolyzed PACl Species: Colloid Destabilization Mechanisms and Flocs Formation Analysis
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Chihpin Huang
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:133
中文關鍵詞:混凝聚氯化鋁鋁十三原子力顯微鏡碎形維度
外文關鍵詞:CoagulationPAClAl13Atomic Force MicroscopeFractal Dimension
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1748
  • 評分評分:
  • 下載下載:215
  • 收藏至我的研究室書目清單書目收藏:0
在水及廢水處理過程中,聚氯化鋁(PACl)是最常被使用於混凝程序以去穩定顆粒之混凝劑。聚氯化鋁混凝劑之效用取決於水解物種與水中顆粒間之作用。水解的鋁物種如聚合鋁及氫氧化鋁會嚴重地影響膠體顆粒之混凝機制,然後會影響膠羽的形成。因為水解鋁物種會隨pH及總鋁濃度改變,故瞭解各種聚氯化鋁混凝劑之鋁形態分佈及在各pH值與加藥量下之主要水解鋁物種對於PACl之應用相當重要。
首先,以瓶杯試驗及Ferron法評估混凝過程中各種鋁水解物種對高嶺土顆粒去穩定之影響,並利用即時的診斷技術探究膠羽的形成及表面結構。同時,進行膠羽表面之鋁元素組成分析。此外,藉由輕敲式原子力顯微鏡及濕式掃描式電子顯微鏡觀察Al13聚集體與氫氧化鋁之表面結構。
在中性條件下,無論加藥量多寡,PACl-C混凝膠羽之形成主要依賴氫氧化鋁沉澱物。相對的,在鹼性條件下,具有高Al13含量之PACl-E主要以Al13聚集體行電性補釘及電性中和之混凝機制。在鹼性及低加藥量條件下, 高純度聚氯化鋁(PACl-Al13)混凝主要以電性補釘去穩定顆粒;在足夠加藥量下,由於具有電中性之Al13聚集體形成促使顆粒間架橋變成主要的混凝機制。
在沉澱絆除或掃除機制及電性補釘機制下形成之膠羽,隨著加藥量增加,膠羽結構變成較密實,此時膠羽遭遇破碎會增加膠羽之碎形維度。相反地,PACl-Al13混凝之膠羽結構隨著加藥量增加而變鬆散。另一方面,沉澱絆除或掃除機制下形成之膠羽具有粗糙的外觀,而電性補釘及電性中和機制下形成之膠羽具有光滑的表面。PACl-Al13混凝所形成之架橋作用會造成鬆散的結構且毛茸的外觀。此條件下,存在一些由盤繞的Al13所構成之線條狀Al13聚集體與其他碎形結構之Al13 聚集體。
本質上,富含氫氧化鋁的膠羽不具有良好的晶形結構,而含有Al13聚集體膠羽則具有類似Al13的晶形結構。在富含氫氧化鋁的膠羽表面上,有許多無定形結晶之氫氧化鋁沉澱物具有四面體或八面體結構,而膠體狀之氫氧化鋁具有凹陷的表面。在鹼性條件下,Al13聚集體被證實存在於PACl-Al13之混凝膠羽表面。
Polyaluminum chloride (PACl) is the most frequently used to destabilize particles for coagulation in water or wastewater treatment. Effective coagulation by PACl depends on the interaction between hydrolyzed Al species and particles in water. Hydrolyzed Al species, such as polymeric Al or Al(OH)3, affect significantly coagulation mechanisms of colloidal particles, which thereafter influence the formation of flocs. Since hydrolyzed Al species varies with pH as well as concentration of Al, it is very important to realize the Al speciation of various PACl coagulants, and their predominant hydrolyzed Al species at various pH values and dosages for coagulation in practice.
Effects of various hydrolyzed Al species on the destabilization of kaolin particles in coagulation were evaluated by jar test as well as Ferron method. Formation of and structure of flocs were also investigated via an in-situ diagnostic technology. In-situ morphology of the flocs formed after coagulation was viewed through a wet SEM assay, and the Al composition of these flocs were further surveyed by XPS. Moreover, in-situ configuration of the Al13 aggregates as well as Al(OH)3 precipitates were also observed by TM-AFM and WSEM, respectively.
The formation of sweep flocs by PACl-C coagulation at neutral pH relied on Al(OH)3 precipitates regardless of the dosage applied. By contrast, the PACl-E containing a high percentage of Al13 caused either electrostatic patch or charge neutralization mechanisms with Al13 aggregates at alkaline pH. For high-purity PACl (PACl-Al13) coagulation, electrostatic patch was responsible for particle destabilization at alkaline pH and low dosage. Interparticle bridging becomes the major mechanism at sufficient dosage due to the formation of Al13 aggregates with nearly zero charge.
The structure of flocs formed by enmeshment or sweep flocculation and electrostatic patch becomes more compact with dosage, in which the breakage of flocs increases the fractal dimension of flocs. On the contrary, flocs coagulated by PACl-Al13 become looser with dosage. On the other hand, enmeshment or sweep flocculation caused sweep flocs with a rough and ragged contour, while electrostatic patch or charge neutralization induced flocs with a smooth and glossy surface. PACl-Al13 coagulation induced by interparticle bridging brought the flocs of a looser structure with a fluffy contour. At such condition, some larger linear Al13 aggregates composed of a chain of coiled Al13 and several coiled Al13 aggregates with different dimensions can be observed.
Intrinsically, the Al(OH)3-rich flocs do not possess well-formed crystalline structure, while the Al13-aggregate flocs possess a Al13-like crystalline structure. There are multitude of amorphous Al(OH)3 precipitates that involve either tetrahedral AlIV(O)4 or octahedral AlVI(O)6 center on the surface of Al(OH)3-rich flocs, while the colloidal Al(OH)3(s) has a sunken surface. It has been proved that the existence of Al13 aggregates on the surface of flocs coagulated by PACl-Al13 at alkaline pH.
摘 要…………………………………………………………………………I
ABSTRACT………………………………………………………………………..III
誌 謝…………………………………………………………………………V
CONTENTS………………………………………………………………………..VI
LIST OF TABLES………………………………………………………...………IX
LIST OF FIGURES………………………………………………………...………X
CHAPTER I INTRODUCTION…………….…………………….………………1
1.1 Background…………………………………………………………………1
1.2 Scope and objectives………………………………………………..………4
1.3 Outlines……………………………………………………………………..5

CHAPTER II LITERATURE REVIEW…………….………………….………..8
2.1 Characterization of Aluminum Coagulants…………………………………8
2.1.1 Chemistry of Hydrolyzing Aluminum…………………………………9
2.1.2 Identification of Hydrolyzing Aluminum Species……………………12
2.1.3 Synthesis and Characteristics of Al13……………………....………...14
2.2 Alum Coagulation…………………………………….………………….18
2.2.1 Colloidal Interaction Forces……………………………...….……….19
2.2.2 Mechanisms of Coagulation……………………………...….……….22
2.3 Coagulation Dynamics………………………………………...….……….28
2.3.1 Floc Formation………………………….……………………………29
2.3.2 Floc Breakage and Restructuring………………………...…..………31
2.4 Floc Physical Characteristics………………………………..…….………33
2.4.1 Floc Size………………………………………………….…..………34
2.4.2 Fractal Dimension……………………………………...…….………35
2.4.3 Floc Strength…………………………………………….…………...37
2.5 Surface Observation by Atomic Force Microscopy…….…………………38

CHAPTER III EXPERIMENTAL MATERIALS AND METHODS….………41
3.1 Materials…………………………………………………………………...41
3.1.1 Synthetic Water Sample……………………………………...………41
3.1.2 Coagulants……………………………………………………………43
3.2 Methods……………………………………………………...…………….44
3.2.1 Ferron Assay………………………………………………....………44
3.2.2 27Al-Nuclear Magnetic Resonance (NMR)…………………..………47
3.2.3 Preparation and Characterization of PACl-Al13……………...………48
3.2.4 Coagulation Experiments……………………………………...……..54
3.2.5 Measurement of Floc Size and Structure……………………...……..57
3.2.6 Solid-state 27Al Magic-angle Spinning Nuclear Magnetic Resonance....59
3.2.7 Wet Scanning Electron Microscope………………..……………...…60
3.2.8 Atomic Force Microscope…………………………………………....62
3.2.9 Field-Emission Electron Microscope……………………………...…63
3.2.10 High-resolution X-ray Powder Diffractometer……..………………..63
3.2.11 Fourier Transform Infrared Spectra………………………………….63
3.2.12 X-ray Photoelectron Spectroscopy………………………..……….…64

CHAPTER IV EFFECT OF Al SPECIES TRANSFORMATION ON COLLOID DESTABILIZATION MECHANISMS.…………………...…………65
4.1 Effects of pH on Coagulation………………………….........................…65
4.1.1 Characterization of Coagulants…………………………………….66
4.1.2 Effects of pH on Turbidity Removal………….……………………...68
4.1.3 Effects of pH on Al Speciation in Coagulation…................................70
4.1.4 Effects of Al Speciation on Particle Destabilization Mechanisms.......72
4.2 Effects of Dosage on Coagulation Efficiency..............................................74
4.2.1 Effects of Dosage on Particle Destabilization…...……………..…….74
4.2.2 Reactive Al Species of Flocs…………………………………….…...79
4.3 Summary………………..............................................................................82

CHAPTER V FORMATION AND STRUCTURE OF FRACTAL FLOCS INDUCED BY VARIOUS DESTABILIZATION MECHANISMS……………...83
5.1 Dynamic Growth of Al-Floc………………………………………………84
5.2 Fractal Structure of Al-Flocs...………………………………………..…...88
5.2.1 Effects of Dynamic Growth of Floc on Fractal Structure……........…88
5.2.2 In-situ Observation on the Morphology of Flocs…………….....……94
5.3 In-situ Observation on the Morphology of Al13 Aggregates……...….……97
5.4 Predominant Destabilization Mechanisms Model…………..…….….…101
5.5 Summary…………………………………………………………………105

CHAPTER VI SURFACE Al COMPOSITION OF Al(OH)3-RICH AND Al13-AGGREGATE FLOCS……………………………………....…………..…..106
6.1 Structure of Al-Flocs………………………………………………......…107
6.1.1 Surface structure of Flocs………….....……………………………..107
6.1.2 Crystalline Structure of Flocs……………………………………….111
6.2 In-situ Observation of Al(OH)3 Precipitates…………………………..…113
6.3 Surface Composition of Al-Flocs…………………………………...……115
6.4 Summary………………………………………………………………….119

CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS…...………120
7.1 Conclusions………………………………………………………………120
7.2 Recommendations………………………………………………………..122

BIBLIOGRAPHY………………………...…………………………………….…123

VITA
Akari, S., Schrepp, W. and Horn, D. Imaging of single polyethylenimine polymers adsorbed on negatively charged latex spheres by chemical force microscopy. Langmuir 12(4), 857-860, 1996.
Akitt, J. W. and Elders, J. M. Multinuclear magnetic resonance studies of the hydrolysis of aluminum(III). VIII. Base hydrolysis monitored at very high magnetic field. J. Chem. Soc. Dalton Trans. 5, 1347-1355, 1988.
Akitt, J. W. and Farthing, A. Aluminum-27 nuclear magnetic resonance studies of the hydrolysis of aluminum(III). II. Gel-permeation chromatography. J. Chem. Soc. Dalton Trans. 7, 1606-1608, 1981.
Akitt, J. W. Multinuclear studies of aluminum compounds. Prog. NMR Spectrosc. 21, 1-149, 1989.
Allouche, L., Gérardin, C., Loiseau, T., Férey, G. and Taulelle, F. Al30: A giant aluminum Polycation. Angew. Chem. Int. Ed. 39, 511-514, 2000.
Amirtharajah, A. and Mills, K. M. Rapid-mix design for mechanism of alum coagulation. J. Am. Water Works Assoc. 74, 210-216, 1982.
Annadurai, G., Sung, S. S. and Lee, D. J. Optimization of floc characteristics for treatment of highly turbid water. Sep. Sci. Technol. 39, 19-42, 2004.
Arita, T., Kanda, Y. and Higashitani, K. In situ observation of single polymers adsorbed onto mica surfaces in water. J. Colloid Interf. Sci. 273, 102-105, 2004.
Aubert, C. and Cannell, D. S. Restructuring of colloidal silica aggregates. Phys. Rev. Lett. 56(7), 738-741, 1986.
AWWA. Jar Testing. In Operation Control of Coagulation and Filtration Processes. AWWARF. Ed., 1-41, 1992.
Axeols, M. A. V., Tchoubar, D. and Jullien, R. X-ray scattering functions of fractal structures: comparison between simulations and experiments. J. Phys. 47(10), 1843-1847, 1986.
Bache, D. H., Johnson, C., McGilligan, J. F. and Rasool, E. A conceptual view of floc structure in the sweep floc domain. Water Sci. Technol. 36(4), 49-56, 1997.
Baes, C. F. and Mesmer, R. E. The Hydrolysis of Cations. Jhon Wiley & Sons, New York, 1976.

Barr, T. L., Seal, S., Wozniak, K. and Klinowski, J. ESCA studies of the coordination state of aluminium in oxide environments. J. Chem. Soc., Faraday Trans. 93(1), 181-186, 1997.
Benefield, L. D., Judkins, Jr. J. F. and Weand, B. L. Process Chemistry for Water and Wastewater Treatment. Prentice Hall, New Jersuy, 1982.
Berka, M. and Rice, J. A. Relation between aggregation kinetics and the structure of kaolinite aggregates. Langmuir 21, 1223-1229, 2005.
Bertsch, P. M. Conditions for Al13 polymer formation in partially neutralized aluminum solutions. Soil Sci. Soc. Am. J. 51, 825-828, 1987.
Bertsch, P. M., Barnhisel, R. I., Thomas, G. W., Layton, W. J. and Smith, S. L. Quantitative determination of aluminum-27 by high resolution nuclear magnetic resonance spectrometry. Anal. Chem. 58(12), 2583-2585, 1986a.
Bertsch, P. M., Layton, W. J. and Barnhisel, R. I. Speciation of hydroxyaluminum solutions by wet chemical and aluminum. Soil Sci. Soc. Am. J. 50, 1449-1454, 1986b.
Biggs, C. A. and Lant, P. A. Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res. 34, 2542-2550, 2000.
Biggs, S., Habgood, M., Jameson, G. and Yan, Y. D. Aggregate structures formed via a bridging flocculation mechanism. Chem. Eng. J. 80, 13-22, 2000.
Bottero, J. Y., Axelos, M., Tchoubar, D., Cases, J. M., Fripiat, J. J. and Flessinger, F. Mechanism of formation of aluminum trihydroxide form Keggin Al13 polymers. J. Colloid Interf. Sci. 117, 47-57, 1987.
Bottero, J. Y., Cases, J. M., Fiessinger, F. and Poirier, J. E. Studies of hydrolyzed aluminum chloride solutions. I. Nature of aluminum species and composition of aqueous solutions. J. Phys. Chem. 84, 2933-2939, 1980.
Bottero, J. Y., Tchoubar, D., Cases, J. M. and Flessinger, F. Investigation of the hydrolysis of aqueous-solutions of aluminum-chloride. II. Nature and structure by small-angel X-ray-scattering. J. Phys. Chem. 86, 3667-3673, 1982.
Bradley, S. M., Kydd, R. A. and Howe, R. F. The structure of Al-gels formed through base hydrolysis of Al3+ aqueous solutions. J. Colloid Interf. Sci. 159, 405-412, 1993.
Brakalov, L. B. A connection between orthokinetic coagulation capture efficiency of aggregates and their maximum size. Chem. Eng. Sci. 42, 2373-2383, 1987.
Chakraborti, R. K., Atkinson, J. F. and Van Benschoten, J. E. Characterization of alum floc by image analysis. Environ. Sci. Technol. 34, 3969-3976, 2000.
Chakraborti, R. K., Gardner, K. H., Atkinson, J. F. and Van Benschoten, J. E. Changes in fractal dimension during aggregation. Water Res. 37, 873-883, 2003.
Chen, Z. Y., Fan, B., Peng, X. J., Zhang, Z. G., Fan, J. H. and Luan, Z. K. Evaluation of Al30 polynuclear species in polyaluminum solutions as coagulant for water treatment. Chemosphere 64, 912-918, 2006.
Cheng, K. K. and Chou, T. C. Crystal Structure Transformation of Solid Polyaluminium Chloride. International Chemical Congress of Pacific Basin Societies, Hawaii, Dec. 14-19, 2000.
Chin, C. J., Yiacoumi, S. and Tsouris, C. Influence of metal ion sorption on colloidal surface forces measured by atomic force microscopy. Environ. Sci. Technol. 36, 343-348, 2002.
Chowdhury, Z. K. and Amy, G. L. Coagulation of submicron colloids in water treatment by incorporation into aluminum hydroxide floc. Environ. Eng. Sci. 25, 1766-1773, 1991.
Chu, C. P., Lee, D. J. and Peng, X. F. Structure of conditioned sludge flocs. Water Res. 38, 2125-2134, 2004.
Clark, M. M. and Flora, J. R. V. Floc restructuring in varied turbulent mixing. J. Colloid Interf. Sci. 147, 407-420, 1991.
Dentel, S. K. Application of the precipitation-charge neutralization model of coagulation. Environ. Sci. Technol. 22, 825-832, 1988.
Derjaguin, B. V. and Landau, L. D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimca URSS 14, 733-762, 1941.
Duan, J. and Gregory, J. Coagulation by hydrolyzing metal salts. Adv. Colloid Interf. Sci. 100-102, 475-502, 2003.
Dubbin, W. E. and Sposito, G. Copper-glyphosate sorption to microcrystalline gibbsite in the presence of soluble Keggin Al-13 polymer. Environ. Sci. Technol. 39, 2509-2514, 2005.
Ducoste, J. J. and Clark, M. M. The influence of tank size and impeller geometry on turbulent flocculation: I. Experimental. Environ. Eng. Sci. 15(3), 215-224, 1998.
Duong, L. V., Wood, B. J. and Kloprogge, J. T. XPS study of basic aluminum sulphate and basic aluminium nitrate. Materials Letters 59(14-15), 1932-1936, 2005.

Elimelech, M., Gregory, J., Jia, X. and Williams, R. A. Particle Deposition and Aggregation: Measurement, Modeling and Simulation. Butterworth-Heinemann Ltd., Oxford, 1995.
Francois, R. J. Growth kinetics of hydroxide flocs. J. Am. Water Works Assoc. 80, 92-96, 1988.
Francois, R. J. Strength of aluminium hydroxide flocs. Water Res. 21, 1023-1030, 1987.
Fu, G., Nazar, L. F. and Bain, A. D. Aging processes of aluminum sol-gels: characterization of new aluminum polyoxycations by 27Al NMR spectroscopy. Chem. Mater. 3(4), 602-610, 1991.
Furrer, G., Gfeller, M. and Wehrli, B. On the chemistry of the Keggin Al-13 polymer: Kinetics of proton-promoted decomposition. Geochim. Cosmochim. Acta. 63, 3069-3076, 1999.
Furrer, G., Ludwig, C. and Schindler, P. W. On the chemistry of the Keggin Al13 polymer. I. Acid-base properties. J. Colloid Interf. Sci. 149, 56-67, 1992.
Furrer, G., Phillips, B., Ulrich, K. U., Pöthig, R. and Casey, W. H. The origin of aluminum flocs in polluted streams. Science 297, 2245-2247, 2002.
Gallucci, E. and Scrivener, K. In situ dynamic SEM imaging of hydration of cement using WETSEM technology. Adv. Appl. Ceram. 106, 319-326, 2007.
Gao, B. Y., Chu, Y. B., Yue, Q. Y., Wang, B. J. and Wang, S. G. Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content. J. Environ. Manage. 76, 143-147, 2005.
Glasgow, L. A. and Luecke, R. H. Mechanisms of deaggregation for clay-polymer flocs in turbulent systems. Ind. Eng. Chem. Fundam. 19(2), 148-156, 1980.
Gregory, J. and Dupont, V. Properties of flocs produced by water treatment coagulants. Water Sci. Technol. 44(10), 231-236, 2001.
Gregory, J. Flocculation by polymers and polyelectrolytes. In Solid/liquid dispersions. Ed. by Tadros, T. F. Academic Press, London, 163-181, 1987.
Gregory, J. Polymer adsorption and flocculation in sheared suspensions. Colloid Surface 31, 231-253, 1988.
Gregory, J. Polymer adsorption and flocculation. In Industrial water soluble polymers. Ed. by Finch, C. A. Royal Society of Chemistry, London, 62-75, 1996.
Gregory, J. Rates of flocculation of latex particles by cationic polymers. J. Colloid Interf. Sci. 42, 448-456, 1973.
Gregory, J. The density of particle aggregates. Wat. Sci. Tech. 36(4), 1-13, 1997.
Guan, J., Waite, T. D. and Amal, R. Rapid structure characterization of bacterial aggregates. Environ. Sci. Technol. 32, 3735-3742, 1998.
Hsu, P. H. Mechanisms of gibbsite crystallization from partially neutralized aluminum chloride solutions. Clays Clay Miner. 36, 25-30, 1988.
Hu, C. Z., Liu, H. J. and Qu, J. H. Preparation and characterization of polyaluminum chloride containing high content of Al13 and active chlorine. Colloid Surface A 260, 109-117, 2005.
Hu, C. Z., Liu, H. J., Qu, J. H., Wang, D. S. and Ru, J. Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control. Environ. Sci. Technol. 40, 325-331, 2006.
Ikai, A. STM and AFM of bio/organic molecules and structures. Surface Science Reports 26, 261-332, 1996.
Isobe, T., Watanabe, T., d'Espinose de la Caillerie, J. B., Legrand, A. P. and Massiot, D. Solid-state H-1 and Al-27 NMR studies of amorphous aluminum hydroxides. J. Colloid Interf. Sci. 261(2), 320-324, 2003.
Israelachvili, J. N. Intermolecular and surface forces. 2nd Ed. Academic Press, London, 1991.
Jarvis, P., Jefferson, B., Gregory, J. and Parsons, S. A. A review of floc strength and breakage. Water Res. 39, 3121-3137, 2005.
Jiang, Q. and Logan, B. E. Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol. 25, 2031-2038, 1991.
Jiang, Q. and Logan, B. E. Fractal dimensions of aggregates from shear devices. J. Am. Water Works Assoc. 88(2), 100-113, 1996.
Johansson, G. On the crystal structures of some basic aluminum salts. Acta Chem. Scand. 14, 771-773, 1960.
Johnston, C. T., Sposito, G. and Erickson, C. Vibrational probe studies of water interactions with montmorillonite. Clay Clay Miner. 40, 722-730, 1992.
Kan, C. C., Huang, C. P. and Pan, J. R. Time requirement for rapid-mixing in coagulation. Colloid Surface A 203, 1-9, 2002.
Katz, A., Bentur, A. and Kovler, K. A novel system for in-situ observations of early hydration reactions in wet conditions in conventional SEM. Cement Concrete Res. 37, 32-37, 2007.
Kazpard, V., Lartiges, B. S., Frochot, C., d’Espinose de la Caillerie, J. B., Viriot, M. L., Portal, J. M., Görner, T. and Bersillon, J. L. Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13 polycations. Water Res. 40, 1965-1974, 2006.
Kloprogge, J. T. and Frost, R. L. Raman microscopy study of basic aluminum sulfate. J. Mater. Sci. 34(17), 4199-4202, 1999.
Kloprogge, J. T., Seykens, D., Jansen, J. B. H. and Geus, J. W. A 27Al nuclear magnetic resonance study. J. Non-Cryst. Solids 142, 94-102, 1992.
Kostansek, E. Controlled coagulation of emulsion polymers. JCT Res. 1, 41-44, 2004.
Kusters, K. A. The influence of turbulence on aggregation of small particles in agitated vessels. Ph. D. Thesis, Eindhoven University of Technology. The Netherlands, 1991.
Lee, C. and Kramer, T. A. Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. Adv. Colloid Interf. Sci. 112, 49-57, 2004.
Lee, D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S. and Autenrieth, R. L., Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Water Res. 36, 1056–1066, 2002.
Lerman, A. Geochemical Processes. New York, Wiley Interscience, 1979.
Letterman, R. D. and Asolekar, S. R. A. Surface ionization of polynuclear species in Al(III) hydrolysis-1. Titration results. Water Res. 24, 931-939, 1990.
Letterman, R. D., Quon, J. K. and Gemmel, R. S. Influence of rapid mix parameters on flocculation. J. Am. Water Work Assoc. 65, 716-725, 1973.
Letterman, R. D., Vanderbrook, S. G. and Sricharoenchaikit, P. Electrophoretic mobility measurements in coagulation with alum salts. J. Am. Water Work Assoc. 74, 44-51, 1982.
Li, D. H. and Ganczarczyk, J. J. Fractal Geometry of Particle Aggregates Generated in Water and Wastewater Treatment Processes. Enuiron. Sci. Technol. 23, 1385-1389, 1989.

Li, J., Fitz-Gerald, J. M., Oberhauser, J. P. Novel wet SEM imaging of organically modified montmorillonite clay dispersions. Appl. Phys. A-Mater. 87(1), 97-102, 2007.
Licskó, I. Realistic coagulation mechanisms in the use of aluminium and iron(III) salts. Water Sci. Technol. 36(4), 103-110, 1997.
Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R. and Meakin, P. Universality in colloid aggregation. Nature 339, 360-362, 1989.
Linnow, K., Juling, H. and Steiger, M. Investigation of NaCl deliquescence in porous substrates using RH-XRD. Environ. Geol. 52(2), 383-393, 2007.
Liu, G. G., Qu, J. H. and Tang, H. G. The electrochemical production of highly effective polyaluminum chloride. Water Res. 33, 807-813, 1999.
Lyklema, J. Fundamentals of Interface and Colloid Science. Academic Press. New York vol II, 4.1-4.120, 1995.
Madejova, J., Janek, M., Komadel, P., Herbert, H. J. and Moog, H. C. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl. Clay Sci. 20, 255-271, 2002.
Mandelbrot, B. B. The Fractal Geometry of Nature. Freeman, San Franciso, 1982.
Mandelbrot, B. B. The Fractal Geometry of Nature; W. H. Freeman and Co.: New York, 1983.
Martin, Y., Williams, C. C. and Wickramasinghe, H. K. Atomic force microscope force mapping and profiling on a sub 100-A scale. J. Appl. Phys. 61(10), 4723-4729, 1987.
Masion, A., Vilgé-Ritter, A., Rose, J., Stone, W. E. E., Teppen, B. J., Rybacki, D. and Bottero, J. Y. Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates. Environ. Sci. Technol. 34(15), 3242-3246, 2000.
Matsui, Y., Yuasa, A., Furuya, Y. and Kamei, T. Dynamic analysis of coagulation with alum and PACl. J. Am. Water Works Assoc. 90(10), 96-106, 1998.
Matsumoto, T. and Adachi, Y. Effect of ionic strength on the initial dynamics of flocculation of polystyrene latex with polyelectrolyte. J. Colloid Interf. Sci. 204, 328-335, 1998.
McCurdy, K., Carlson, K. and Gregory, D. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminium chloride coagulants. Water Res. 38, 486-494, 2004.
Meakin, P. and Witten, T. A. Growing interface in diffusion-limited aggregation. Phys. Rev. A 28, 2985-2989, 1983.
Meakin, P. Fractal aggregates. Adv. Colloid Interface Sci. 28(4), 249-331, 1988.
Mikkelsen, L. H. and Keiding, K. The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test. Water Res. 36, 2931-2940, 2002.
Molis, E., Thomas, F., Bottero, J. Y., Barres, O. and Masion, A. Chemical and structural transformation of aggregated Al-13 polycations, promoted by salicylate ligand. Langmuir 12(13), 3195-3200, 1996.
Nalaskowski, J., Veeramasuneni, S., Hupka, J. and Miller, J. D. Interactions between fossil resin and coal in the presence of anionic and cationic surfactants. Colloid Surface A 154, 103-113, 1999.
Oles, V. Shear-induced aggregation and breakup of polystyrene late particles. J. Colloid Interf. Sci. 154, 351-358, 1992.
Parker, D. R. and Bertsch, P. M. Identification and quantification of the Al13 tridecameric polycation using ferron. Environ. Sci. Technol. 26, 914-913, 1992.
Parthasarathy, N. and Buffle, J. Study of polymeric aluminum(III) Hydroxide solutions for application in waste water treatment. Properties of the polymer and optimal conditions of preparation. Water Res. 19(1), 25-36, 1985.
Pelssers, E. G., Cohen, M., Stuart, M. A. and Fleer, G. J. Kinetic aspects of polymer bridging: Equilibrium flocculation and nonequilibrium flocculation. Colloid Surface 38, 15-25, 1989.
Pernitsky, D. J. and Edzwald, K. Solubility of polyaluminium coagulants. J. Water Suppl.: Res. Technol.-AQUA 52, 395-406, 2003.
Phillips, B. L., Casey, W. H. and Karlsson, M. Bonding and reactivity at oxide mineral surfaces from model aqueous complexes. Nature 404, 379-382, 2000.
Piedra, G., Fitzgeralf, J. J., Dando, N., Dec, S. F. and Maciel, G. E. Solid-state 1H NMR studies of aluminum oxide hydroxides and hydroxides. Inorg. Chem. 35, 3474-3478, 1996.
Potanin, A. A. On the computer-simulation of the deformation and breakup of colloidal aggregates in shear-flow. J. Colloid Interf. Sci. 157, 399-410, 1993.
Pouillot, M. and Suty, H. High-basicity polymeric aluminum salts for drinking-water production. Water Supply, 10(4), 133-153, 1992.
Putman, C. A. J., van der Werf, K. O., De Grooth, B. G., Van Hulst, N. F. and Greve, J. Tapping atomic-force microscopy in liquid. Appl. Phys. Lett. 64, 2454-2456, 1994.
Rakotonarivo, E., Bottero, J. Y., Thomas, F., Poirier, J. E. and Cases, J. M. Electrochemical modeling of freshly precipitated aluminum hydroxide-electrolyte interface. Colloid Surface 33, 191-207, 1988.
Rowsell, J. and Nazar, L. F. Speciation and thermal transformation in alumina sols: Structures of the polyhydroxyoxoaluminum cluster and its δ-Keggin moieté. J. Am. Chem. Soc. 122, 3777-3778, 2000.
Shi, B. Y., Li, G. H., Wang, D. S. and Tang, H. X., Separation of Al13 from polyaluminum chloride by sulfate precipitation and nitrate metathesis. Sep. Purif. Technol. 54, 88-95, 2007.
Shu, L., Schlüter, A. D., Ecker, C., Severin, N. and Rabe, J. P. Extremely long dendronized polymers: synthesis, quantification of structure perfection, individualization, and SFM manipulation. Angew. Chem. Int. Ed. 40(24), 4666-4669, 2001.
Smith, R. W. Reactions among equilibrium and nonequilibrium aqueous species of aluminum hydroxyl complexs. Adv. Chem. Ser. 106, 250-279, 1971.
Sonntag, R. C. and Russel, W. B. Structure and breakup of flocs subjected to fluid stresses I. Shear Experiments. J. Colloid Interf. Sci. 113, 399-413, 1986.
Spicer, P. T. and Pratsinis, S. E. Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Water Res. 30, 1049–1056, 1996.
Sposito, G. Characterization of particle surface charge. Environmental Particles. B. J. v. HP. Lewis Publishers, Boca Raton. 1, 291-314, 1993.
Sposito, G. The Environmental Chemistry of Aluminum. 2nd Ed. CRC press, 1996.
Stipp, S. L. S. In situ, real-time observations of the adsorption and self-assembly of macromolecules from aqueous solution onto an untreated, natural surface. Langmuir 12(7), 1884-1891, 1996.
Tambo, N. and Hozumi, H. Physical characteristics of flocs. 2. Strength of floc. Water Res. 13, 421-427, 1979.
Tambo, N. and Watanabe, Y. Physical aspect of flocculation process: I. Fundamental treatise. Water Res. 13, 429-439, 1979.

Thomas, D. C. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Interf. Sci. 20, 267-327, 1965.
Thomas, D. N., Judd, S. J. and Fawcett, N. Flocculation modeling: a review. Water Res. 33, 1579-1592, 1999.
Torres, F. E., Russel, W. B. and Schowalter, W. R. Simulations of coagulation in viscous flows. J. Colloid Interf. Sci. 145, 51-73, 1991.
Van Benschoten, J. E. and Edzwald, J. K. Chemical aspects of coagulation using aluminum slats-2. Coagulation of fulvic acid using alum and polyaluminum chloride. Water Res. 24, 1519-1526, 1990.
Verwey, E. J. W. and Overbeek, J. Th. G. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, 1948.
Violante, A. and Huang, P. M. Influence of inorganic and organic-ligands on the formation of aluminum hydroxides and oxyhydroxides. Clays Clay Miner. 33, 181-191, 1985.
Wadu-Mesthrige, K., Amro, N. A., Garno, J., C., Cruchon-Dupeyrat, S. and Liu, G. Y. Contact resonance imaging-A simple approach to improve the resolution of AFM for biological and polymeric materials. Applied Surface Science 175-176, 391-398, 2001.
Waite, T. D. Measurement and implications of floc structure in water and wastewater treatment. Colloid Surface A 151, 27–41, 1999.
Waite, T. D., Cleaver, J. K. and Beattie, J. K. Aggregation kinetics and fractal structure of gamma-alumina assemblages. J. Colloid Interf. Sci. 241, 333-339, 2001.
Wang, D. S., Hong, L., Chunhua, L. and Hongxiao, T. Removal of humic acid by coagulation with nano-Al13. Wat. Sci. Tech. 6(1), 59-67, 2006.
Wang, D. S., Sun, W., Xu, Y., Tang, H. X. and Gregory, J. Speciation stability of inorganic polymer flocculant-PACl. Colloid Surface A 243, 1-10, 2004.
Wang, D. S., Tang, H. X. and Gregory, J. Relative importance of charge neutralization and precipitation on coagulation of kaolin with PACl: Effect of sulfate ion. Environ. Sci. Technol. 36, 1815-1820, 2002.
Wang, W. Z. and Hsu, P. H. The nature of polynuclear OH-Al complexes in laboratory-hydrolyzed and commercial hydroxyaluminum solutions. Clays Clay Miner. 42, 356-368, 1994.

Williams, R. A., Peng, S. J. and Naylor, A. In situ measurement of particle aggregation and breakage kinetics in a concentrated suspension. Powder Tech. 73, 75-83, 1992.
Witten, Jr. T. A. and Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400-1403, 1981.
Wood, T. E., Siedle, A. R., Hill, J. R., Skarjune, R. P. and Goodbrake, C. J. Hydrolysis of aluminium. Are all gels created equal? Better Ceram. Chem. IV, Symp. 180, 97-116, 1990.
Wu, R. M., Lee, D. J., Waite, T. D. and Guan, J. Multilevel structure of sludge flocs. J. Colloid Interf. Sci. 252, 383-392, 2002.
Wu, X. H., Ge, X. P., Wang, D. S. and Tang, H. X. Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloid Surface A 305, 89-96, 2007.
Xu, T., Wang, D. S., Liu, H., Lu, Y. Q. and Tang, H. X. Optimization of the separation and purification of Al-13. Colloid Surface A 231, 1-9, 2003.
Yamamoto, T., Fukushima, T., Kanda, Y. and Higashitani, K. Molecular-scale observation of the surface of polystyrene particles by AFM. J. Colloid Interf. Sci. 292, 392-396, 2005.
Yan, M. Q., Wang, D. S., Qu, J. H., He, W. J. and Chow, C. W. K. Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: A case study with the typical micro-polluted source waters. J. Colloid Interf. Sci. 316, 482-489, 2007.
Ye, C. Q., Wang, D. S., Shi, B. Y., Yu, J. F., Qu, J. H., Edwards, M. and Tang, H. X. Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloid Surface A 294, 163-173, 2007.
Yu, J. F., Wang, D. S., Ge, X. P., Yan, M. Q. and Yang, M. Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetic and flocs structures. Colloid Surface A 290, 288-294, 2006.
Zhong, Q., Inniss, D., Kjoller, K. and Elings, V. B. Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf. Sci. 290(1-2), L688-L692, 1993.
Zhou, Y. and Franks, G. V. Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 22, 6775-6786, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊