跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡世澤
論文名稱:移動污染空間性影響及風險評估
論文名稱(外文):Spatial Impact and Risk Assessment for Mobile Source Pollution
指導教授:高正忠高正忠引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:移污風險評估污染空間分佈街谷模式永續環境系統分析
外文關鍵詞:mobile source pollutionrisk assessmentspatial pollution distributionmodeling simulationsustainable environmental systems analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
汽機車所排放污染物是都巿空氣污染主要來源,且會隨著車流、車行里程及人口在不同區域造成不同程度的影響與風險,本研究因而發展適當的方法評估移污所造成的空間性影響及風險。且應用於案例區台北市。
移污空間分佈不易估算,雖有人提出道路密度(RND)法,但RND相似不代表車流大,因而會低估高污染區,實際誤差可能很大,本研究因而建立車流污染強度密度(VFPID)法改善之,但VFPID法未考量行駛距離不同亦會有不同排放量,故以車行里程污染強度密度(VTPID)法進一步改善之。各方法估算前首先依耗油量估算總污染排放量且將案例區劃分為多個網格,再分別依各網格RND、VFPID及VTPID所佔的比例分配總污染排放量至各網格中,並以失能人年DALY值來表示風險的大小。三個方法所得之移污分佈,再配合人口分佈,即可分析移污空間性風險。由於移污亦受街道形式影響,本研究亦因而以OSPM街谷模式模擬街道之移污濃度,再配合街道旁的人口,分析案例區街道移污對街道旁住戶的暴露風險。
結果顯示依RND法所分配的區域排放量與VFPID法的差異最大可達10000噸。而VTPID結果亦與VFPID結果差異可達5000噸;而由OSPM模擬結果可發現在不同型態街道會造成不同污染濃度,甚至與前三個方法產生不同的結果,例如敦化南路一段的車流雖然大於北安路,但街道寬度比北安路寬58公尺,OSPM模擬的CO濃度反而較後者低。依各方法結果及人口分佈所計算的風險值,以PM10的DALYs最高,NOx、CO次之,SOx最小,一般車流較大時人口亦較多,風險亦較高,如中山等區,但亦有因街道較窄而有較大風險的地區,如大安區。相信所發展的方法可改善移污空間分佈的推估品質,以利於進行相關的決策分析。
Vehicle exhaust emission is the main source of air pollution in metropolitan areas in Taiwan and greatly affects citizens and causes health risks. Different traffic flows, spatial mobile pollution distributions, and population distributions can cause different levels of impact and health risk. This study was thus initiated to develop appropriate methods for assessing the spatial impact and risk caused by the mobile pollution. The methods were also applied to Taipei City, the case study area for this study.
It is not easy to evaluate the spatial distribution of the mobile pollution. Although a method called the Road Network Density (RND) method had been previously proposed, similar RNDs do not indicate similar traffic flows and thus may underestimate the pollution in high traffic-flow areas, and the error may be quite significant. Therefore, the Vehicle-flow-based Pollution Intensity Density (VFPID) method was proposed in this study to improve the problem. However, the VFPID method does not consider different traveling distances that can cause different emissions. The Vehicle-travel-mileage-based Pollution Intensity Density (VTPID) method was thus proposed. Before implementing the three methods, the total mobile pollution (TMP) emission was estimated according to the amount of gasoline consumed, and the entire study area was divided into grids in the same size. The TMP emission was allocated to each grid according to its RND, VFPID, or VTPID ratio. With the pollution distributions determined by the three methods and the population distribution of the city, spatial effects and health risks caused by mobile pollution were estimated. And the Disability Adjusted Life Years (DALYs) is used to express the risk level. Furthermore, since similar emission in different types of roads would give different distributions of mobile pollution, the Operational Street Pollution Model was adopted to simulate air pollutant concentrations on road sides, and the results obtained were used to assess the exposure risk on the residents living in the road sides.
The results show that the pollution distribution estimated by the RND method can underestimate the pollution up to 10,000 tons when compared with that estimated by the VFPID method. Also the difference between the VTPID and VFPID results can be up to 5,000 tons. According to the OSPM simulation results, it can be observed that different types of streets cause varied pollution concentrations. Significantly different results were observed also when compared to those from the other three methods. For example, the traffic flow of the Section 1 of the Dunhua-South Road is more than that of the Bei-an Road, but the street width of the former is 58 meters wider than the latter street, and subsequently the simulated CO concentration is lower in the former street. According to the risks estimated from the obtained pollution and population distributions, the risk estimated for PM10 is the highest, the SOx risk is the lowest, and NOx and CO have median risks. When the traffic flow is large and population density is high, the associated risk is high too, such as the Zhongshan district. However, some areas have narrow streets that cause high risk, such as the Da-an District. It is believed that the proposed methods can improve the estimation of spatial mobile pollution distribution and subsequently facilitate further decision-making analyses.
目錄
中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
符號說明 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究流程 3
1.4 案例區介紹 5
1.5 論文內容 10
第二章 文獻回顧 11
2.1 移動污染源 11
2.2 移動污染分佈估算法 11
2.3 街谷模式 13
2.4 風險分析 13
2.4.1 移污之危害 15
2.4.2 風險分析 15
第三章 移污之空間分布與風險分析 17
3.1 道路密度法 17
3.1.1 推估排放量 17
3.1.2 依道路密度法分配總排放量 19

3.2 車流污染強度密度法 20
3.2.1 車流污染強度推估 20
3.2.2 依車流污染強度密度法分配總排放量 23
3.3 車行里程污染強度密度法 23
3.4 空間性影響 24
3.5 風險分析 33
3.6 移污空間性分布推估方法比較 39
第四章 街谷模式法 45
4.1 OSPM模式模擬 45
4.1.1 OSPM模式簡介 45
4.1.2 OSPM模式模擬 51
4.2 街道模擬濃度分布 55
4.3 風險分析 59
4.4 車行里程污染強度法與街谷模式法之比較 61
第五章 結論與建議 67
5.1 結論 67
5.2 建議 70
參考文獻 71
附錄 台北市各型車輛排放係數 75
中鼎公司,(92年),中華民國中鼎公司台北市移污排放量資料,中鼎公司。
內政部,(95年),中華民國內政部統計處內政統計年報。 http://www.moi.gov.tw/stat/index.asp (accessed on 2008).
北巿交通局,(95年),中華民國台北市交通局交通統計資訊。http://www.dot.taipei.gov.tw/newch/statistic.asp (accessed on 2008).
北巿民政局,(95年),中華民國台北市民政局門牌系統查詢。http://www.houseno.tcg.gov.tw/ (accessed on 2008).
北巿交通管制工程處,(95年),中華民國台北市交通管制工程處交通流量調查資料。http://www.bote.taipei.gov.tw/flow.asp (accessed on 2008).
交通部運輸研究所,(93年),中華民國交通部運輸研究所道路網數值圖,交通部運輸研究所。
林永章,(89年),「移動性污染源排放量推估與地理資訊系統之整合」,碩士論文,國立中興大學環境工程研究所,台中。
陳彥佑,(95年),「應用偵測器推估公路車流量之研究」,碩士論文,國立交通大學運輸工程研究所,新竹。
環保署,(92年),中華民國行政院環境保護署空氣排放清冊。 http://www.epa.gov.tw/b/b0100.asp?Ct_Code=04X0000145X0010219&L=1 (accessed on 2008).
Brauer, M. (2006). “Spatial modeling of exposure to traffic-related air pollution and application to birth cohorts in the Georgia basin-puget sound international airshed.” Epidemiology, 17, pp. S56-S56.
Cicero-Fernandez, P., Torres, V., Rosales, A., Cesar, H., Dorland, K., Munoz, P., Uribe, R., and Martinez, A. P. (2001). “Evalution of human exposure to ambient PM10 in the metropolitan area of Mexico city using a GIS-based methodology.” Air & Waste Management, 51, pp. 1586-1593.
Costabile F., Desantis F., and Hong W. M. (2006). “Representativeness of urban highest polluted zones for sitting traffic-oriented air monitoring stations in a Chinese city.” JSME International Journal Series B-Fluids and Thermal Engineering, 49, pp. 35-41.
Greco, S. L., Wilson, A. M., Spengler, J. D. and Levy, J. I. (2007) “Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the Unites States.” Atmospheric Environment, 41, pp. 1011-1025.
Hertel, O. and Berkowicz, R. (1989). “Modelling pollution from traffic in a street canyon.” Evaluation of data and model development, 77p.
Jensen, S. S. (1998). “Mapping human exposure to traffic air pollution using CIS.” Journal Of Hazardous Materials, 61, pp. 385-392.
Louvar, J. F. and Louvar, B. D. (1998). “Health and Environmental Risk Analysis: Fundamentals with Applications.” Health Risk Assessment, pp. 180-185.
Johnson, W. B., Ludwig, F. L., Dabbert, W. F., and Allen, R. J. (1973). “An urban diffusion simulation model for carbon monoxide.” Journal of the Air Pollution Control Association, 23, pp. 490-498.
Kastner-Klein, P., Fedorovich, E., Ketzel, M., Berkowicz, R., and Britter, R. (2003). “The Modelling of Turbulence from Traffic in Urban Dispersion Models- PartⅡ: Evaluation against Laboratory and Full-Scale Concentration Measurements in Syreet Canyons.” Environment Fluid Mechanic, 3, pp. 145-172.
Kukkonen, J., Partanen, L., and Karppinen, A . (1997). “Evaluation of the OSPM model combined with an urban background model against the data measured in 1997 in Runeberg Street Helsinki.” Atmospheric Environment, 37, pp. 1101-1112.
Lin, M. D. and Lin, Y. C. (2002). “The application of GIS to air quality analysis in Taichung City.” Environmental Modelling and Software, 17, pp. 11-19.
PRé Consultants, The Eco-indicator 99: A damage oriented method for Life Cycle Impact Assessment. http://www.pre.nl (accessed on 2008).
Singh, R. B. and Sloan, J. J. (2006) “A high-resolution NOx emission fator model for North American motor vehicles.” Atmospheric Environment, 40, pp. 5214-5223.
Tuia, D., de Eicker, M.O., and Zah, R. (2007). “Evaluation of a simplified top-down model for the spatial assessment of hot traffic emissions in mid-sized cities.” Atmospheric Environment, 41, pp. 3658-3671.
USEPA, Integrated Risk Information System, United State Environmental Protection Agency. http://www.epa.gov/iris/ (accessed on 2008).
Vardoulakis, S., Valiantis, M., and Milner, J. (2007). “Operational air pollution modelling in the UK - Street canyon applications and challenges.” Atmospheric Environment, 41, pp. 4622-4637.
Xie, S. D., Zhang, Y. H., Li, Q., and Tang, X. Y. (2003). “Spatial distribution of traffic-related pollutant concentrations in street canyons.” Atmospheric Environment, 37, pp. 3213-3224.
Yamartino, R. J. and Wiegand, G. (1986). “Development and evaluation of simple models for flow turbulence and pollutant concentration fields within an urban street canyon.” Atmospheric Environment, 20, pp. 2137-2156.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top