跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖偉志
研究生(外文):Wei-Chih Liao
論文名稱:硫酸還原菌降解Fluorene動力參數之研究
論文名稱(外文):Fluorene Biodegradation by Sulfate Reducing Bacteria: A Kinetics Study
指導教授:林志高林志高引用關係
指導教授(外文):Jih-Gaw Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:硫酸還原菌最佳化抑制動力參數
外文關鍵詞:FluoreneSulfate reducing bacteriaOptimizationInhibitionKinetics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
多環芳香族碳氫化合物 (polycyclic aromatic hydrocarbons, PAHs) 在環境中是一種具有毒性難以分解的污染物,所以從環境中去除 PAHs 是一個相當重要的研究,而在許多的生物研究中 PAHs 已被證實可以在各種不同的厭氧條件下被微生物降解。本研究是以硫酸還原菌 (sulfate reducing bacteria, SRB) 為優勢菌的微生物族群來降解Fluorene,以中央合成設計法 (central composite design, CCD) 進行批次式實驗操作條件的規劃,同時找出硫酸鹽以及微生物濃度的最佳操作條件。再以最佳操作條件,改變 Fluorene 的濃度 (0-100 mg/L) 研究 Fluorene 對 SRB 的抑制。
實驗結果顯示以 SRB 為優勢菌的微生物族群可以利用 Fluorene 作為基質而生長,而 Fluorene 的零階、一階降解速率常數分別為0.21 mg/L-d 和 0.1/d。藉由反應曲面法 (response surface methodology, RSM) 找出硫酸鹽和微生物濃度的最佳操作範圍以及發展出一個 Fluorene 去除百分比的二階模式,找到最佳的操作點硫酸鹽濃度為14.4 mM,微生物濃度為37.8 mg/L,在此最佳條件下 Fluorene 的降解百分比為90%。
抑制實驗的數據以 Haldane’s equation 模式套配可得到動力參數 �慆ax、Ks以及 Ki,其數值分別為0.35/d、0.07 mg/L 以及600 mg/L。由於本研究所使用的營養鹽中含有酵母萃取物以及溶劑,微生物可以利用作為碳源使得無法在抑制實驗中觀察到 Fluorene 對 SRB 的毒性影響,但是可以推測 Fluorene 的濃度高於600 mg/L 時會對 SRB 造成抑制。另外在螢光原位雜交法 (fluorescent in-situ hybridization, FISH) 的分析,可以證明 SRB 在實驗所使用的微生物族群中為主要的優勢菌種,所佔的比例為85%。
Polycyclic aromatic hydrocarbons (PAHs) are one of the most important contaminants released in the environment. Anaerobic degradation of PAHs has been demonstrated in several microcosm studies. In this study, anaerobic fluorene degradation by sulfate reducing bacterial enrichment culture was investigated. Subsequently, batch biodegradation experiments were designed using the central composite design (CCD) and carried out to estimate the optimum operating conditions of sulfate reducing bacteria (SRB) and sulfate concentrations. Biodegradation rates of fluorene were 0.21 mg/L-d in zero-order and 0.1/d in first-order kinetics.

Response surface methodology (RSM) was used to optimize the sulfate and biomass concentrations, and was used to develop a model for the responses. Applying the desirability function, the optimum conditions of sulfate and biomass concentrations were found as 14.4 mM and 37.8 mg/L, respectively. The highest fluorene removal percentage of 90% was observed at optimum conditions.

In addition, the inhibition kinetics of fluorene biodegradation by SRB were investigated over a range of initial fluorene concentrations (from 0 to 100 mg/L) using the Haldane’s model. The kinetics parameters obtained were �慆ax of 0.35/d, Ks of 0.07 mg/L and Ki of 600 mg/L. Due to the addition of solvents (dichloromethane, N,N-dimethylformamide) and yeast extract in the PAHs biodegradation experiments, microorganisms grew using DMF and/or yeast extract which result no toxicity in the inhibition study. However, the fluorene biodegradation by SRB can be inhibited when fluorene concentration is higher than 600 mg/L. The FISH analysis showed that SRB was the major species in the enriched bacterial culture.
Contents
中文摘要 I
Abstract III
Contents V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Introduction to PAHs and Fluorene 3
2.2 Environmental Fate of PAHs and their Problems in the Environment 5
2.3 Anaerobic Biodegradation of PAHs 5
2.3.1 PAHs Biodegradation under Sulfate Reducing Conditions 8
2.4 Factors Influencing Biodegradation of PAHs 11
2.4.1 Concentration of Electron Acceptor 11
2.4.2 Biomass Concentration 12
2.4.3 pH and Temperature 12
2.5 Anaerobic PAHs Biodegradation Kinetics 16
Chapter 3 Materials and Methods 18
3.1 Introduction 18
3.2 Materials 18
3.3 Incubation 22
3.4 Experimental Methods and Design 23
3.4.1 Treatability Study 23
3.4.2 Optimization Study 25
3.4.3 Inhibition Study 26
3.5 Analytic Methods 27
3.5.1 PAH Extraction 27
3.5.2 PAH Quantification 27
3.5.3 Bacterial Cell Density Measurement 28
3.5.4 FISH Analysis 30
Chapter 4 Result and Discussion 33
4.1 Enrichment of SRB 33
4.2 Treatability of SRB Enrichment Culture 35
4.3 Optimization Study 39
4.3.1 Result of CCD 39
4.3.2 Response Surface and Contour Plot 44
4.3.3 Optimization of Fluorene Biodegradation 46
4.4 Confirmation Study 46
4.4.1 Evaluation of Predicted Model 46
4.4.2 Observations of FISH Analysis 51
4.4.3 Kinetics of Fluorene Biodegradation 53
4.5 Inhibition Study 58
4.5.1 Biodegradation of Fluorene 58
4.5.2 Inhibition Kinetics 60
Chapter 5 Summary and Conclutions 62
References 63
Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A. (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied and Environmental Microbiology 58, pp. 614-623.
Bach, Q. D., Kim, S. J., Choi, S. C. and Oh, Y. S. (2005) Enhancing the intrinsic biodegradation of PAH-contaminated anoxic estuarine sediments with biostimulating agents. The Journal of Microbiology 43, pp. 319-324.
Bamforth, S.M. and Singleton, I. (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology Biotechnology 80, pp. 723-736.
Baskaran, V. and Nemati, M. (2006) Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir. Biochemical Engineering Journal 31, pp. 148-159.
Bedessem, M. E., Swoboda-Colberg, N. G. and Colberg, P. J. (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichment. FEMS Microbiology Letter 152, pp. 213-218.
Boopathy, B. (2004) Anaerobic biodegradtion of no. 2 diesel fuel in soil: a soil column study. Bioresource Technology 94, pp. 143-151.
Casellas, M., Grifoll, M., Bayona, J. M. and Solanas, A. M. (1997) New Metabolites in the Degradation of Fluorene by Arthrobacter sp. Strain F101. Applied and Environmental Microbiology 63, pp. 819-826.
Cerniglia, C. E. (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, pp. 351-368.
Chakraborty, R. and Coates, J. D. (2004) Anaerobic degradation of monoaromatic hydrocarbons. Applied Microbiology and Biotechnology 64, pp. 437-446.
Chang, B. V., Chang, J. S. and Yuan, S. Y. (2001) Degradation of phenanthrene in river sediment under nitrate-reducing conditions. Bulletin of Environmental Contamination and Toxicology 67, pp. 898-905.
Chang, B. V., Shiung, L. C. and Yuan, S. Y. (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48, pp. 717-724.
Chang, W., Um, Y. and Holoman, T. R. P. (2006) Polycyclic aromatic hydrocarbon (PAH) degradation coupled the methanogenesis. Biotechnology Letters 28, pp. 425-430.
Coates, J.D., Anderson, R.T. and Lovley, D.R. (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Applied and Environmental Microbiology 62, pp. 1099-1101.
Coates, J. D., Woodward, J., Allen, J., Philp, P. and Lovley, D.R. (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Applied Environmental Microbiology 63, pp. 3589-3593.
Corzo, O., Bracho, N., Vasquez, A. and Pereira, A. (2008) Optimization of a thin layer drying process for coroba slices. Journal of Food Engineering 85, pp. 372-380.
Feio, M. J., Beech, I. B., Carepo, M., Lopes, J. M., Cheung, C. W. S., Franco, R., Guezennec, J., Smith, J. R., Mitchell, J. I., Moura, J. J. G. and Lino, A. R. (1998) Isolation and characterization of a novel sulphate-reducing bacterium of the Desulfovibrio Genus. Anaerobe 4, pp. 117-130.
Genthner, B. R. S., Townsend, G. T., Lantz, S. E. and Mueller, J. G. (1997) Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions. Archives of Environmental Contamination and Toxicology 32, pp. 99-105.
Hayes, L. A., Nevin, K. P. and Lovley, D. R. (1999) Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Organic Geochemistry 30, pp. 937-945.
Hayes, L. A. and Loveley, D. R. (2002) Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Microbial Ecology 43, pp. 134-145.
Holliger, C. and Zehnder, A. J. (1996) Anaerobic biodegradation of hydrocarbons. Current Opinion in Biotechnology 7, pp. 326-330.
Howsam, M., Jones, K. C. and Ineson, P. (2000) PAHs associated with the leaves of three deciduous tree species. I — Concentration and profiles. Environmental pollution 108, pp. 413-424.
Ito, T., Nielsen, J. L., Okabe, S., Watanabe, Y. and Nielsen, P. H. (2002) Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Applied and Environmental Microbiology 68, pp. 356-364.
Johnson, D. L., Anderson, D. R. and McGrath, S. P. (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biology and Biochemistry 37, pp. 2334-2336.
Juhasz, A. L. and Naidu, R. (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of Benzo[a]pyrene. International Biodeterioration & Biodegradation 45, pp. 57-88.
Karthikeyan, R. and Bhandari, A. (2001) Anaerobic biotransformation of aromatic and polycyclic aromatic hydrocarbons in soil microcosms: A review. Journal of Hazardous Substance Research 3, pp. 1-18.
Kleikemper, J., Pelz, O., Schroth, M. H. and Zeyer, J. (2002) Sulfate-reducing bacterial community response to carbon source amendment in contaminated aquifer microcosms. FEMS Microbiology Ecology 42, pp. 109-118.
Lei, L., Khodadoust, A. P., Suidan, M. T. and Tabak, H. H. (2005) Biodegradation of sediment-bound PAHs in field-contaminated sediment. Water Research 39, pp. 349-361.
Loh, K. C. and Yu, Y. G. (2000) Kinetics of carbazole degradation by pseudomonas putida in presence of sodium salicylate. Water Research 34, pp. 4131-4138.
Madsen, E. L., Mann, C. L. and Bilotta, S. E. (1996) Oxygen limitation and aging as explanations for the field persistence of naphthalene in coal tar-contaminated surface sediments. Environmental Toxicity and Chemistry 15, pp. 1876-1882.
Mcnally, D. L., Mihelcic, J. R. and Lueking, D. R. (1998) Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environmental Science and Technology 32, pp. 2633-2639.
Meckenstock, R. U., Annweiler E., Michaelies, W., Richnow, H. H. and Schink, B. (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Applied and Environmental Microbiology 66, pp. 2743-2747.
Meckenstock, R. U., Safinowski, M. and Griebler, C. (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology 49, pp. 27-36.
Mihelcic, J. R. and Luthy, R. G. (1988) Degradation of polyclinic aromatic hydrocarbons compounds under various redox conditions in soil-water systems. Applied and Environmental Microbiology 54, pp. 1182-1187.
Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A. and Shimizu, Y. (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Review Environmental Science and Biotechnology 5, pp. 347-374.
Moretto, L. M., Silvestri, S., Ugo, P. and Zorzi, G. (2005) Polycyclic aromatic hydrocarbons degradation by composting in a soot-contaminated alkaline soil. Journal of Hazardous Materials 126, pp. 141-148.
Namkoong, W., Hwang, E. Y., Park, J. S. and Choi, J. Y. (2002) Bioremediation of diesel-contaminated soil with composting. Environmental Pollution 119, pp. 23-31.
Nemr, E. A. and Abd-Allah, A. M. A. (2003) Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere 52, pp. 1711-1716.
Northcott, G. L. and Jones, K. C. (2001) Partitioning, extractability, and formation of non-extractable PAH residues in soil: compound differences in aging and sequestration. Environmental Science and Technology 35, pp. 1103-1110.
Postgate, J. R. (1984) The sulfate reducing bacteria 2nd. edition pp. 31-32. Cambridge university press, Cambridge.
Rabus, R., Fukui, M., Wilkes, H. and Widdel, F. (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Applied and Environmental Microbiology 62, pp. 3605-3613.
Ramsay, J. A., Li, H., Brown, R. S. and Ramsay, B. A. (2003) Naphthalene and anthracene mineralization linked to oxygen, nitrate, Fe(Ⅲ) and sulphate reduction in a mixed microbial population. Biodegradation 14, pp. 321-329.
Ramsay, J. A., Robertson, K., Loon, G. V., Acay, N. and Ramsay, B. A. (2005) Enhancement of PAH biomineralization rates by cyclodextrins under Fe(Ⅲ)-reducing conditions. Chemosphere 61, pp. 733-740.
Rockne, K. J. and Strand, S. E. (1998) Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environmental Science and Technology 32, pp. 3962-2967.
Rockne, K. J. and Strand, S. E. (2001) Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Research 35, pp. 291-299.
Rothermich, M. M., Hayes, L. A. and Lovley, D.R. (2002) Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environmental Science and Technology 36, pp. 4811-4817.
Semple, K. T., Dew, N. M., Doick, K. J. and Rhodes, A. H. (2006) Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil. Environmental Pollution 140, pp. 164-172.
Shuttleworth, K. L. and Cerniglia, C. E. (1995) Environmental aspects of PAH biodegradation. Applied Microbiology and Biotechnology 54, pp. 291-302.
Tam, N. F. Y., Ke, L., Wang, X. H. and Wong, Y. S. (2001) Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environmental Pollution 114, pp. 255-263.
Yan, J., Jianping, W. and Hongmei, L. (2005) The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochemical Engineering Journal 24, pp. 243-247.
Yuan, S. Y., Wei, S. H. and Chang, B. V. (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41, pp. 1463-1468.
Yuan, S. Y., Chang, J. S., Yen, J. H. and Chang, B. V. (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43, pp. 273-278.
Zhang, X. and Young, L. T. (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Applied and Environmental Microbiology 63, pp. 4759-4764.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top