跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何峻徹
研究生(外文):Jyun-Che Ho
論文名稱:連續時間和差類比數位轉換器之迴圈延遲補償器設計之研究
論文名稱(外文):On Loop Delay Compensation Design for Continuous-Time ΣΔ ADC
指導教授:董蘭榮董蘭榮引用關係
指導教授(外文):Lan-Rong Dung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:連續性和差調變器製程變化
外文關鍵詞:continuous-timesigma delta modulatorprocess variations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:1
和差調變器以往是非常廣泛的應用於低中頻寬、高解析度的一項技術。然而相較於過去傳統所常用的交換型電容(離散時間)的技術,隨著對於頻寬需求的增加,連續型的電路設計方式將會更適合於現今高頻寬的應用。本論文就實現連續型和差調變器來做一些探討。在於和差調變器回授路徑上,不同的延遲時間將會依據一些數學理論來做詳細地分析。此晶片使用台積電0.18μm CMOS 製程,供應電壓為1.8 V,消耗功率為6.5-mW,晶片核心面積為0.05mm2。模擬結果在100MHz的取樣頻率、2MHz 的頻寬內得到峰值SNDR為 62dB。
A ΔΣ modulator is well-known as a very efficient technique for the implementation of high resolution A/D converters in low to medium bandwidth applications. Comparing with switched-capacitor (discrete-time) technique in the past, the continuous time circuitry is more suitable for today’s growing bandwidth applications. The thesis presents the implementation of a ΔΣ modulator with continuous-time techniques. Different numbers of digital delay in the ΔΣ feedback loop have been analyzed based on mathematic theorems in detail. The chip is designed with 1.8V power supply by using 0.18μm TSMC CMOS process, with power consumption 6.5mW and the core area 0.05mm2. The simulation result shows that the ADC achieves a 62dB peak signal-to-noise pulse distortion ratio (Peak-SNDR) within a 2MHz bandwidth with a sampling rate of 100MHz
ABSTRACT I
ACKNOWLEDGMENTS III
CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VI
CHAPTER 1 1
INTRODUCTION 1
1.1 CONTINUOUS-TIME ΣΔ MODULATORS 1
1.2 ORGANIZATION OF THE THESIS 3
CHAPTER 2 4
FUNDAMENTALS OF ΣΔ MODULATORS 4
2.1 SAMPLING AND QUANTIZATION 4
2.2 NYQUIST-RATE, OVERSAMPLING AND NOISE-SHAPING CONVERTERS 5
2.3 ΣΔ MODULATOR DESIGN ISSUES 6
2.3.1 Performance Increase in ΣΔ Modulators 6
2.3.2 Stability Constraints and Scaling 7
2.4 CT LOOP FILTER SYNTHESIS 8
2.4.1 Equivalence between DT and CT 8
2.4.2 Rectangular Feedback Signal 10
2.4.3 Decaying RC Feedback Signal 12
2.4.4 With an Additional Feedback Path 13
2.4.5 Design Examples 14
2.5 ARCHITECTURES AND IMPLICIT ANTI-ALIASING FEATURE 20
2.5.1 Feed-Forward (FF) and Feedback (FB) Architectures 20
2.5.2 Implicit Anti-Aliasing Feature 21
CHAPTER 3 24
NON-IDEALITIES IN CT ΣΔ MODULATORS 24
3.1 ERRORS OF THE FILTERS 24
3.1.1 Gain Errors 25
3.1.2 Finite DC-Gain 26
3.1.3 Finite Gain Bandwidth 27
3.1.4 Further Filter Non-Idealities 28
3.2 ERRORS OF THE FEEDBACK DAC 29
3.2.1 Excess Loop Delay 29
3.2.2 Clock Jitter 30
3.2.3 Jitter Noise Power Analysis 34
3.2.4 Jitter Noise Model 36
3.2.5 Further DAC Non-Idealities 38
3.3 ERRORS OF THE INTERNAL QUANTIZER 39
CHAPTER 4 40
ANALYSIS ON DIFFERENT LOOP DELAY COMPENSATION 40
4.1 EXCESS LOOP DELAY COMPENSATION 40
4.2 NOISE POWER GAIN (NPG) 42
4.2.1 Boundary of Noise Power Gain 43
4.2.2 NPG Values of Different Delay Compensation 44
4.3 POLE LOCATIONS OF NOISE TRANSFER FUNCTION 45
4.4 THIRD ORDER SIMULATION RESULTS 47
4.5 ANALYSIS AND SIMULATION RESULT OF OTHER HIGHER ORDER ΣΔ MODULATOR 49
CHAPTER 5 56
A PRACTICAL CIRCUIT IMPLEMENTATION 56
5.1 LOOP FILTER IMPLEMENTATION 56
5.1.1 Active-RC Filter 58
5.1.2 Bias Circuit 60
5.1.3 Two-Stage Operation Amplifier 61
5.2 TRI-LEVEL QUANTIZER AND DAC REALIZATION 63
5.3 CIRCUIT LEVEL SIMULATION RESULT 68
CHAPTER 6 72
CONCLUSION 72
REFERENCES 73
[1] S. R. Rorsworthy, R. Schreier, and G. Temes, Delta-sigma Data Converters, Piscataway, NJ:IEEE Press, 1997.
[2] P..Benabes, M.Keramat and R. Kielbasa, “A Methodology for designing continuous-time sigma-delta modulators” European Design and Test Conference (ED&TC 97), pp. 46-50, Paris, 1997.
[3] M.S. Kappes, “A 2.2-mW CMOS Bandpass Continuous-Time Multibit Δ-Σ ADC with 68 dB of Dynamic Range and 1-MHz Bandwidth for Wireless Applications,” IEEE J. Solid-State Circuits, Vol. 38, pp. 1098-1104, July 2003.
[4] M. Moyal, M. Groepl, H.Werker, G.Mitteregger, and J. Schambacher, “A 700/900 mW/channel CMOS dual analog front-end IC for VDSL with integrated 11.5/14.5 dBm line drivers,” in IEEE ISSCC Dig. Tech.Papers, 2003, pp. 416–504.
[5] S. Yan and E. S�鴨chez-Sinencio, “A continuous-time ΣΔ modulator with 88 dB dynamic range and 1.1 MHz signal bandwidth,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2003, vol. 46, pp. 62–63
[6] S. Paton, A. Di Giandomenico, L. Hern�鴨dez, A. Wiesbauer,Potscher, and M. Clara, “A70-mW 300-MHz CMOS continuous-time sigma-delta ADC with 15-MHz bandwidth and 11-bits of resolution,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1056–1062, Jul. 2004.
[7] J.A. Cherry and W.M. Snelgrove, Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion, 2000.
[8] L . Breems and J.H. Huising, Continuous-Time Sigma-Delta Modulation for A/D Conversion in Radio Receivers, 2001.
[9] Buhmann, A.; Keller, M.; Ortmanns, M.; Gerfers, F.; Manoli, Y.;“ Time-Continuous Delta-Sigma A/D Converters: From Theory to Practical Implementation” Advanced Signal Processing, Circuits, and System Design Techniques for Communications, Page(3):169-216, May 2006
[10] J. Arias and etc, “A 32-mW 320-MHz Continuous-Time Complex Delta-Sigma ADC for Multi-Mode Wireless-LAN Receivers,” IEEE J. Solid-State Circuits, Vol. 41, No. 2, pp. 339-351, Feb. 2006.
[11] G. Mitteregger, C. Ebner, S. Mechnig, T. Blon, C. Holuigue, B. Romani, A. Melodia, and V. Melini, "A 14b 20mW 640MHz CMOS CT ΣΔ ADC with 20MHz Signal Bandwidth and 12b ENOB," in Proc. IEEE Int. Solid-State Circuits Conf, 2006, pp. 62-63.
[12] M.Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion, Springer, Berlin, Heidelberg, New York, 2006
[13] Lukas D�宁rer, Franz Kuttner, Patrizia Greco, Patrick Torta, and Thomas Hartig, “A 3-mW 74-dB SNR 2-MHz Continuous-Time Delta-Sigma ADC With a Tracking ADC Quantizer in 0.13-μm CMOS” IEEE J. Solid-State Circuits VOL. 40, NO. 12, DECEMBER 2005
[14] Paton, S.; Poscher, T.; Di Giandomenico, A.; Kolhaupt, K.; Hernandez, L.;Wiesbauer, A.; Clara, M.; Frutos, R.; “Linearity Enhancement Techniques in Low OSR, High Clock Rate Multi-bit Continuous-Time Sigma-Delta Modulators” Custom Integrated Circuits Conferences, Page(s):527 – 530,Oct. 2004
[15] Robert H. M. van Veldhoven, Brian J. Minnis, Hans A. Hegt, and Arthur H. M. van Roermund, “A 3.3-mW ΣΔ Modulator for UMTS in 0.18-μm CMOS With 70-dB Dynamic Range in 2-MHz Bandwidth” IEEE J. Solid-State Circuits VOL. 37, NO.12, DECEMBER 2002
[16] L. Risbo, ΣΔ Modulators - Stability Analysis and Optimization, Ph.D. thesis, Technical University of Denmark, 1994.
[17] Tai-Haur Kuo; Kuan-Dar Chen; Jhy-Rong Chen; “Automatic coefficients design for high-order sigma-delta modulators” IEEE Transactions on Circuits and Systems -I, Volume 46, Issue 1, Jan. 1999 Page(s):6 – 15
[18] J.C. Candy. .A Use of Double Integration in Sigma Delta Modulation IEEE Transactions on Communication, vol. com-33(No. 3):189.199, March 1985.
[19] O. Shoaei. .Continuous-Time Delta-Sigma A/D Converters for High Speed Applications PhD thesis, Carleton University, Ottawa, Canada, 1995.
[20] R. Schreier and B. Zhang. .Delta-Sigma Modulators Employing Continuous-Time Circuitry.. IEEE Transactions on Circuits and Systems -I, vol. 43(No. 4):324.332, April 1996.
[21] R. Schreier. The Delta-Sigma toolbox for MATLAB. Oregon State University, http://www.mathworks.com, November 1999.
[22] L. Doerrer, A. Di Giandomenico, and A. Wiesbauer, "A 10-Bit, 4mW Continuous-Time Sigma-Delta ADC for UMTS in a 0.12um CMOS process," in Proc. European Solid-State Circuits Conf, 2003, pp. 245-248.
[23] Aboushady, H.; Louerat, M.-M. “Loop delay compensation in bandpass continuous-time ΣΔ modulators without additional feedback coefficients” International Symposium on Circuits and Systems, volume 1, 23-26 Page(s):I - 1124-7 Vol.1 May 2004
[24] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989
[25] Beilleau, N.; Aboushady, H.; Louerat, M.M.;” Filtering adjacent channel blockers using signal-transfer-function of continuous-time ΣΔ modulators” Midwest Symposium on Circuits and Systems Volume 1, 25-28 July 2004 Page(s):I - 329-32 vol.1
[26] S. Yan and E. Sanchez-Sinencio, “A Continuous-Time ΣΔ with 88-dB Dynamic Range and 1.1-MHz Signal Bandwidth,” IEEE J. Solid-State Circuits, Vol. 39, No. 1, Jan. 2004
[27] L.J. Breems, R. Rutten and G. Wetzker, “A Cascaded Continuous-Time ΣΔ Modulator With 67-dB Dynamic Range in 10-MHz Bandwidth,” IEEE J. Solid-State Circuits, Vol. 39, No. 12, pp. 2152-2160, Dec. 2004.
[28] F. Gerfers. A Design Strategy for Low-Voltage “Low-Power Continuous-Time ΣΔ A/D Converters” In Design, Automation and Test Conference, DATE, pages 361-368, 2001.
[29] F. Gerfers, M. Ortmanns, and Y. Manoli, “A 1.5V, 12-Bit Power Efficient Continuous Time Third-Order ΣΔ Modulator,”IEEE J. Solid-State Circuits, Vol. 38, No. 8, pp. 1343-1352, Aug. 2003.
[30] N. Wongkomet and B. E. Boser, “An Analysis of Continuous Time Sigma Delta Modulators,” Electrical Engineering Conference No.21,1998
[31] M. Ortmanns, F. Gerfers, and Y. Manoli, “Influence of finite integrator gain bandwidth on CT sigma delta modulators,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 1, May 2003, pp. 925–928.
[32] M. Ortmanns, F. Gerfers and Y. Manoli, “Compensation of Finite Gain-Bandwidth Induced Errors in Continuous-Time Sigma-Delta Modulators,” IEEE Transaction on Circuits and System-I, Vol. 51, No.6, pp. 1088-1099, June 2004.
[33] L. J. Breems, E. J. van der Zwan, and J. H. Huijsing, “Design for Optimum Performance to Power Ration of a Continuous Time ΣΔ Modulator,” in Proc. European Solid-State Circuits Conf., 1999, pp 318-321.
[34] J.A. Cherry and W.M. Snelgrove, “ Excess Loop Delay in Continuous-Time Delta-Sigma Modulators,” IEEE Transactions on Circuit and System I, Vol. 46, No.4, pp. 376-389, April 1999.
[35] O. Oliaei, “ Jitter Effects in Continuous Time ΣΔ Modulators with delayed Return-To-Zero Feedback,” in Proc. IEEE Int. Conf. On Electronics, Circuits and Syst., 1998, p. 351354.
[36] M. Ortmanns, F. Gerfers, and Y. Manoli, “A Continuous-Time Sigma –Delta Modulator with reduced Jitter Sensitivity,” in Proc. European Solid-State Circuits Conf. 2002, pp. 287-290
[37] Susan Luschas, and Hae-Seung Lee,” High-Speed ΣΔ Modulators With Reduced Timing Jitter Sensitivity,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2002
[38] F. Gerfers, M. Ortmanns, Philipp Schmitz “A Transistor-based Clock Jitter Insensitive DAC Architecture, IEEE ISCAS, pp. 21-24, May 2006.
[39] B. M. Putter, " ΣΔ ADC with finite impulse response feedback DAC,” IEEE Int. Solid-State Circuits Conf. pp.76-77, Feb. 2004.
[40] O. Oliaei, “Continuous-time sigma-delta modulator incorporating semi-digital FIR filters, “IEEE Int. Symp. On Circuits and Systems, pp. 957-960, May2003.
[41] L. Hernandez, A. Wiesbauer, S. Paton and A. Di Giandomenico,” Modelling and Optimization of Low Pass Continuous-Time Sigma-Delta Modulators for Clock Jitter noise Reduction,” IEEE ISCAS, Vol. 1, pp. I- 1072-5, May 2004.
[42] F. Medeiro, B. Perez-Verdu, and A. Rodriguez-Vazquez, Top-Down Design of High Performance Sigma-Delta Modulators, Kluwer Academic Pub, 1999.
[43] J. A. Cherry, W. M. Snelgrove, “Clock jitter and quantizer metastability in continuous-time delta–sigma modulators,” IEEE Trans. on Circuit and System II, vol. 46, pp. 661-676, June 1999.
[44] E.J. van der Zwan. “A 2.3mW CMOS ΣΔ Modulator for Audio Applications” ISSCC Digest of Technical Papers, pages 220-221, February 1997.
[45] H. Aboushady, J.R. Westra, and E.C. Dijkmans. “A 120 dB Dynamic Range ΣΔ DAC for Super Audio Compact Disc” Philips Research Report, December 1999
[46] R. Adams, K.Q. Nguyen, and K. Sweetland. “A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling”.IEEE Journal of Solid-State Circuits,vol. 33(No. 12):1871.1878, December 1998
[47] F. Chen and B. Leung, "A 0.25 mW low-pass passive sigma-delta modulator with build-in mixer for a 10-MHz IF input," IEEE Journal of Solid-State Circuits, vol. 32, no. 6, Jun. 1997.
[48] Song, T. Yan, S. Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA;“ A low power 1.1 MHz CMOS continuous-time delta-sigma modulator with active-passive loop filters” IEEE ISCAS, pp.21-24, May 2006.
[49] Shoaei, O. Snelgrove, W.M. Bell Labs, Lucent Technol., Allentown, PA; “Design and implementation of a tunable 40 MHz-70 MHz Gm-C bandpass ΣΔ modulator” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997.
[50] EJ, and DTJKMANS, EC: “A 0.2 mW CMOS modulator for speech coding with 80dB dynamic range” IEEE Journal of Solid-State Circuits, vol. 32, no. 6, Jun. 1997.
[51] Sansen, W.M.C.; Schoofs, R.; Steyaert, M.S.J.;” A Design-Optimized Continuous Time Delta–Sigma ADC for WLAN Applications” IEEE Transactions on Circuits and Systems -I, Volume 54, Jan. 2006 Page(s):209 – 217
[52] Robert H. M. van Veldhoven “A Triple-Mode Continuous-Time ΣΔ Modulator With Switched-Capacitor Feedback DAC for a GSM-EDGE/CDMA2000/UMTS Receiver” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 12, DECEMBER 2003
[53] Friedel Gerfers, Maurits Ortmanns, Yiannos Manoli ,“A 1 V, 12-Bit Wideband Continuous-Time Modulator ΣΔ for UMTS Applications” in Proc. IEEE ISCAS,2003,pp. 921-924
[54] Toshiaki Nagai, Hiroyuki Satou, Hiroshi Yamazaki, Yuu Watanabe Fujitsu, Kawasaki, Japan,“A 1.2V 3.5mW ΣΔ Modulator with a Passive Current Summing Network and a Variable Gain Function” in Proc. IEEE ISSCC ,2005,pp. 494-495.
[55] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford Univ. Press, 2002.
[56] G. M. Yin, F.Op’t Eynde, and W.Sansen “A High-Speed CMOS Comparator with 8-b Resolut
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top