跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴信丞
研究生(外文):Hsin-Cheng Lai
論文名稱:用於消化道影像壓縮之簡化版H.264畫面內編碼器實現
論文名稱(外文):A Modified H.264 Intra-frame Encoder for Gastrointestinal Image
指導教授:董蘭榮董蘭榮引用關係
指導教授(外文):Lan-Rong Dung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:66
中文關鍵詞:消化道影像壓縮畫面內編碼
外文關鍵詞:Gastrointestinal imageH.264Intra-frame Encoder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文的目標是發展一個專為膠囊內視鏡設計,極低功率消耗的影像壓縮處理器。在膠囊內視鏡的應用上,考慮內視鏡中電池功率消耗和影像品質的權衡是件非常重要的事。使用最先進的動態影像壓縮技巧能藉著它們的高壓縮率,明顯的減少位元數。但是它們都需要大量的計算和從電池中消耗大量的功率。用其他快速壓縮演算法來減少計算量,會造成與原來影像的失真。因此,這篇論文提出一個簡化版的H.264畫面內編碼器。利用腸胃道影像的特徵與膠囊內視鏡的規格,來做功率消耗與影像品質的取捨,選擇出最適合腸胃道影像之演算法。最後使用低功率架構來硬體實現。我們以TSMC 0.18-um製程實現的結果,發展的動態影像壓縮需要60K邏輯閘,在每秒兩張512x512大小的畫面下消耗功率為0.9161mW,同時壓縮比例能在4:1以下。
The objective of this thesis is to develop an ultra-low-power image compression processor for capsule endoscope or swallowable imaging capsules. In applications of capsule endoscope, it is imperative to consider battery life and performance trade-offs. Applying state-of-the-art video compression techniques may significantly reduce the image bit rate by their high compression ratio, but they all require intensive computation and consume much power from battery. There are many fast compression algorithms for reducing computation load; however, they may result in distortion of original image. Thus this thesis proposes a modified H.264 Intra-frame encoder for gastrointestinal image. The algorithm exploits the characteristic of gastrointestinal image to reduce compute complexity and save power. As the result of implementation, the developed video compressor costs 60k gates at 2 frames/sec, consumes 0.9161mW, while the compression ratio can be as low as 4:1.
Chapter 1 Introduction 7
1.1 Motivation 7
1.2 Organization of This Thesis 10
Chapter 2 Backgrounds 12
2.1 Demosaicking 12
2.2 Bilinear Interpolation 13
2.3 Color Space Transform 13
2.4 Overview of H.264/MPEG-4 AVC Intra Coding 14
2.5 Prediction Modes of Intra Macroblocks 15
2.6 Cost Generation and Mode Decision 19
2.7 Transform 20
2.8 Quantization 21
2.9 Entropy Coding 22
2.10 Rate Control 25
Chapter 3 Algorithm of Intra-frame Encoder for Gastrointestinal Image Compression 27
3.1 Algorithm of Intra-frame Encoder for Gastrointestinal Image Compression ……………………………………………………………………………...27
3.2 Intra Prediction 29
3.3 Rate Control 34
3.4 Difference of ΔQ 37
3.5 Simulation and Results 38
Chapter 4 Architecture Design of Intra-frame Encoder for Gastrointestinal Image Compression 41
4.1 Overall Architecture 41
4.2 Schedule of Encoder 43
4.3 Finite Word Length 43
4.4 Intra Prediction Unit 45
4.5 Integer Transform Unit 47
4.6 Quantization and De-quantization Unit 48
4.7 Delta Quantization Difference Unit 49
4.8 Rate Control Unit 50
4.9 Entropy Coding Unit 50
Chapter 5 System Verification and Simulation Results 55
5.1 System Environments 55
5.2 Design Flow 55
5.3 Implementation Results and Verification 58
Chapter 6 Conclusion and Future Work 62
6.1 Conclusion 62
6.2 Future Work 63
REFERENCES 64
[1]F. Gong. P. Swain, and T. Mills, “Wireless endoscopy,” Gastrointestinal Endoscopy, vol.51, no. 6, pp. 725-729, June 2000.
[2]H. J.Park, H.W. Nam, B.S. Song, J.L. Choi, H.C. Choi, J.C. Park, M.N. Kim, J.T. Lee, and J.H. Cho, “Design of bi-directional and multi-channel miniaturized telemetry module for wireless endoscopy,” in Proc. of the 2nd Annual Int’l IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, pp. 273-276. May, 2002
[3]http://www.givenimaging.com/Cultures/en-US/given/english
[4]http://www.rfsystemlab.com/
[5]M. Sendoh, k. Ishiyama, and K.-I. Arai, “Fabrication of Magnetic Actuator for Use in a Capsule Endoscope,” IEEE Trans. On Magnetics, vol. 39, no. 5, pp. 3232-3234, September 2003.
[6]Louis Phee, Dino Accoto, Arianna Menciassi, Cesare Stefanini, Maria Chiara Carrozza, and Paolo Dario, “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Trans. On Biomedical Engineering, vol. 49, no. 6, JUNE 2002.
[7]H.A. Peterson, H. Peng, J. H. Morgan, and W. B. Pennebaker, “Quantization of color image components in the DCT domain” SPIE , Human Vision, Visual Processing, and Digital Display II, vol.1453, 1991.
[8]J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. On Inform. Theory, vol. 23, pp. 337-343, May 1977.
[9]Shin-Arn Hwang and Cheng-Wen Wu, “Unified VLSI Systolic array design for LZ data compression,” IEEE Trans. On VLSI, vol. 9, pp. 489-498, August 2001.
[10]Meng-Chun Lin, Lan-Rong Dung and Ping-Kuo Weng, “A Ultra-low-power Image Compressor for Capsule Endoscope,” BioMedical Engineering OnLine, vol.5, pp.14.1-14.8 February, 2006
[11]Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC, in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, Mar. 2003
[12]Generic Coding of Moving Picture and Associated Audio Information – Part 2: Video, ITU-T Recommendation H.262 and ISO/IEC 13818-2, Draft International Standard, Nov. 1994
[13]Coding of Audio-Visual Objects –Part 2: Visual, ISO/IEC 14496-2, International Standard:1999/Amd1:2000,Jan.2000
[14]A. Puri, X. Chen, A. Luthra, “Video Coding Using the H.264/MPEG-4 AVC Compression Standard,” Signal Proc. Image Communicaion, vol. 19, pp.793-849,2004
[15]Coding of Moving Pictues and Associated Audio for Digital Storage Media up to about 1.5Mbits/s, ISO/IEC 11172-2, International Standard, Nov. 1992
[16]T. Halbach, “Performance comparison: H.26L intra coding vs. JPEG2000”, JVT-D039, July,2002
[17]H.264/MPEG-4 AVC reference software, JM8.6
[18]Chao-Chung Cheng, Chun-Wei Ku, and Tian-Sheuan Chang, “A 1280x720 pixels 30 frames/s H.264/MPEG-4 AVC intra encoder,” IEEE International Symposium on circuits and Systems, May. 2006
[19]De-Wei Li, Chun-Wei Ku, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan Chang, “A 61MHz 72 Gates 1280x720 30FPS H.264 Intra Encoder” IEEE International Symposium on Circuits and Systems, vol.2, pp.||-801-||804, April 2007
[20]Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen, ”Analysis, fast algorithm, and VLSI architecture design for H.264/AVC intra frame coder, ” IEEE Transactions on Circuits and Systems for Video Technology, vol.15, pp.378-401, March 2005
[21]Chuan-Yung Tsai, Tung-Chien Chen, and Liang-Gee Chen, “Low power entropy coding hardware design for H.264/AVC baseline profile encoder” IEEE International Conference on Multimedia and Expo, pp.1941- 1944 July 2006
[22]Sheu-Chih Cheng and Hsueh-Ming Hang, “The impact of rate control Algorithms on video codec hardware design” International Conference on Image Processing. vol. 2, pp.807-810 Oct.1997
[23]Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG 4th Meeting: Klagenfurt, Austria, 22-26 July,2002
[24]Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG 10th Meeting: Wailaloa, Hawaii, USA, 8-12 December, 2004
[25]W. Zouch, A. Samet, M.A. Ben Ayed, F. Kossentini, N. Masmoudi, “ Complexity analysis of intra prediction in H.264/AVC,” IEEE International Conference on Microelectronics, pp. 713-717, Dec. 2004
[26]Chao-Chung Cheng and Tian-Sheuan Chang, “Fast three step intra prediction algorithm for 4x4 blocks in H.264/AVC,” IEEE International Symposium on Circuits and Systems, vol.2, pp. 1509-1512, May.2005
[27]Chen Chen, Ping-Hao Wu and H. Chen, “Transform-domain intra prediction for H.264,” IEEE international Symposium on Circuits and Systems, vol.2, pp.1497-1500, May. 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文