(3.238.186.43) 您好!臺灣時間:2021/03/01 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃煒智
研究生(外文):Wei Zhi Huang
論文名稱:SOI基板上利用SU-8機構組裝之三維微結構
論文名稱(外文):Assembly of Three Dimensional Microstructures on SOI Wafers Using SU-8 Mechanisms
指導教授:邱一
指導教授(外文):Yi Chiu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:82
中文關鍵詞:微鏡面SU-8彈簧組裝
外文關鍵詞:micromirrorSU-8 springassembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
近年來在半導體產業的發展之下,微機電製程技術有許多重大的發展,而在許多應用領域中對於三維微結構的要求更是甚多。如何使三維微結構的製造更加有效率且能夠有良好的定位功能是我們的目標。
因為我們所製作的結構最終目標是要應用在光學系統方面,因此採用應力幾乎為零且結構較厚的SOI (Silicon On Insulator)基板製作微鏡面,避免一般利用多晶矽製作時可能發生的翹曲現象,並且整合SU-8以製作其他所需的微結構。由於SU-8有良好的機械特性和低溫製程,使得往後的電路整合更加容易。
我們提出了one-push式的三維微結構組裝方式來簡化組裝複雜度。也就是只要經過一個探針下壓的動作就可以完成組裝。由於結構的定位準確性和結構上的蝕刻孔對於光學上的應用會造成很大的影響,因此我們提出了一種V型絞鏈的新設計來增加組裝結構的定位準確性。另外,為了消除在表面微加工中常出現的蝕刻孔,我們也利用背向乾蝕刻的方式去解決此問題。
在論本文中,我們成功的製造並組裝出上述的元件,其可行性已經獲得證實。而面臨的問題(例如彈簧結構設計不良)和改善方向也將會討論,以利之後對光學系統的製作和電路整合上的要求。
Recently, the Micro Electro Mechanical Systems (MEMS) technology has many important developments with the rapid progress in the semiconductor industry. In many applications, there is demand for three-dimensional (3-D) structures. More effective assembly technique and positioning accuracy are needed for 3-D microstructures.
In this thesis, the silicon on insulator (SOI) wafers with almost zero stress are used in order to prevent the stress-induced curvature in micro devices made of poly silicon for optical applications. SU8 has good mechanical property and low temperature process, making it suitable as another structural layer and integration with circuit.
In this thesis, a new assembly approach with one push operation is proposed to reduce the assembly complexity. Namely, all probe manipulation is reduced to a simple one-push operation. A novel V-shaped hinge is used to eliminate the play in traditional hinge designs and therefore improves the positioning accuracy. In order to address the issues with etch holes in surface micromachining, the structure without etch holes is used. The etching from the backside of the substrate is performed.
The feasibility of the proposed one-push assembly process, V-shaped hinge elements and structure without etch holes, is verified in this thesis. The encountered problems, such as the robustness of spring structures, are discussed for further researches.
中文摘要……………………………………………………………………………..….i
Abstract……..…………………………………………….…………...…………..…...ii
誌謝........................…………………………………………………..…..………..…...iii
Table of Content………………………………………………………..…...........……iv
List of Figures…………………...……………………………………....…...………...vi
List of Tables….…………………...…………………………………........…………....x
Chapter1 Introduction………….…………………………...………...…………….....1
1-1 Motivation…….………………………………..……………..……...………..…1
1-2 Literature survey…………………………………………………...……………..5
1-2-1 Microfabricated hinges…….……………….….………………...…………5
1-2-2 Scratch drive actuator……………………………….………..…...……......7
1-2-3 Magnetic force assembly………………………………………...…………8
1-2-4 Electrostatic force assembly………………………………………...….......9
1-2-5 Centrifugal force assembly…………………………….…………....….......9
1-2-6 Surface tension-powered self-assembly………………….….....................11
1-2-7 Microassembly of 3-D microstructures using microgrippers….….......…..12
1-2-8 Microassembly of hingeless 90∘microstructures………………..….…...14
1-3 Objectives and thesis organization…….………………………………..………16
Chapter2 Principle and Design…………………….………………………...………18
2-1 Introduction…………………………...…….…………………………....………18
2-2 Integration of SOI wafer and SU-8 structural layer……………...…………....…21
2-3 Device design…………………………………………………………….....……22
2-3-1 Assembly process…….……….………………………………......………22
2-3-2 Locking mechanism…….……….…………………………….....……….24

2-4 V-shaped hinge……………………………..…….…………………..…..………28
2-5 Flexible side latch…...........................................................................................…32
2-6 Micromachined mirrors without etch holes…....………………………...….....…35
2-7 Summary……………………………………………………………….............…36
Chapter3 Fabrication Process .........………………...…………………..…...……37
3-1 Integration of SOI and SU-8……………………………………………...……....37
3-2Process flow……………………………………………………………...…….….38
3-3 Fabrication problems and discussions………………..………………….....…….49
3-3-1 Adhesion of SU-8 structures….……….………………………………...…49
3-3-2 Vapor HF release….……….……………………………………..……...…52
3-4 Fabricated structure………………………………………………………..…..…54
3-5 Summary…………………………………………………………………..…...…56
Chapter4 Measurement and Experiment Results…………………………......……57
4-1 Assembly experiment………………………………...………………………......57
4-1-1 Feasibility….……….………………………………………………....……57
4-1-2 Problems during the assembly process.………………….……….……...…60
4-1-3 Assembly time.……….………………………………………………...…..64
4-2 Device measurement…………………….………………………….……...…..…65
4-2-1 V-shaped hinge measurement………………………………………...….....65
4-2-2 Angle measurement……………………………………………………...…66
4-2-3 Optical measurement of mirror without etch holes……………………...…69
4-3 Summary………………………………………………………………….……....74
Chapter5 Conclusion and Future Work…………………...………………....…..…75
5-1 Conclusion………………………………………….………………………...…..75
5-2 Future Work………………………………………………….………………...…75
Reference………………………………………………..………………………..…...79
[1] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
[2] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1552–1574, 1998.
[3] http://www.dbanks.demon.co.uk/ueng/
[4] F. G. Tseng, “Silicon bulk micromachining” & “bioMEMS system,” in Micro Electro Mechanical Systems Technology & Application, Precision Instrument Development Center, National Science Council, Taiwan, 2003.
[5] D. A. Koester, “SmartMUMPs design handbook including MUMPS introduction and design rules,” rev. 4, MEMS Technology Applications Center MCNC, 1996
[6] http://www.summitmicro.com/home/
[7] D. J. Young, V. Malba, J. J. Ou, A. F. Bernhardt, and B. E. Boser, “Monolithic high-performance three-dimensional coil inductors for wireless communication applications,” Electron Devices Meeting, Technical Digest, pp. 351-354, 1997.
[8] M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proceedings of the IEEE, vol. 85, no. 11, pp. 1833-1856, 1997.
[9] S. H. Tsang, D. Sameoto, I. G. Foulds, R. W. Johnstone, and M. Parameswaran, “Automated assembly of hingeless 90 degree out-of-plane microstructures,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1314–1325, 2007.
[10] G. W. Dahlmann and E. M. Yeatman, “High Q microwave inductors on silicon by surface tension selfassembly,” Electronics Letters, vol. 36, no. 20, pp. 1707-1708, 2000.

[11] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges,” Sensors and Actuators, vol. A, no. 33, pp. 249-256, 1992.
[12] T. Akiyama and K. Shono, “Controlled stepwise motion in polysilicon microstructures,” Journal of Microelectromechanical Systems, vol. 2, no. 3, pp. 106-110, 1993.
[13] L. Fan, M. Wu, K. Choquette, and M. Crawford, “Self-assembled microactuated xyz stages for optical scanning and alignment,” International Conference On Solid-State Sensors and Actuators, Chicago, pp. 319-322, 1997.
[14] Y. W. Yi and C. Liu, “Magnetic actuation of hinged microstructures,” Journal of Microelectromechanical Systems, vol. 8, no. 1, pp. 10-17, 1999.
[15] W. J. Robert, “Electrostatic self-assembly of raised surface micromachined structures for optics,” Master Thesis, School of Engineering Science, Simon Fraser University, 2000.
[16] A. P. Hui, and W. J. Li, “Non-contact batch micro-assembly by centrifugal force,” The Fifteenth IEEE International Conference of Microelectromechanical Systems, pp. 184-187, 2002.
[17] R. R. A. Syms and E. M. Yeatman, “Self-assembly of fully three-dimensional microstructures using rotation by surface tension forces,” Electronics Letters, vol. 29, no. 8, pp. 662–664, 1993.
[18] R. R. A. Syms, E. M. Yeatman, V. M. Bright, and G. M. Whitesides, “Surface tension-powered self-assembly of microstructures - the state-of-the-art,” Journal of Microelectromechanical Systems, vol. 12, no. 4, pp. 387-417, 2003.
[19] N. Dechev, W. L. Cleghorn, and J. K. Mills, “Microassembly of 3-D microstructures using a compliant, passive microgripper,” Journal of Microelectromechanical Systems, vol. 13, no. 2, pp. 179-189, 2004.

[20] S. H. Tsang, D. Sameoto, I. Foulds, A.M. Leung, and M. Parameswaran, “Automated assembly of hingeless 90° out-of-plane microstructures,” Journal of Microelectromechanical Systems, vol. 13, no. 2, pp. 1314-1325, 2004.
[21] A. Friedgerger and R. S. Muller, “Improved surface-micromachined hinges for fold-out structures,” Journal of Microelectromechanical Systems, vol. 7, no. 3, pp. 315–319, 1998.
[22] J. W. Wu, “MEMS based micro optical bench with integration of SOI and SU-8,” master thesis, Department of Electrical and Control Engineering, National Chiao Tung University, 2006.
[23] H. Lorenz, M. Despont, M. Fahrni, N. LaBianca, P. Vettiger, and P. Renaud, “SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol. 7, pp. 121-124, 1997.
[24] D. Bachmann, B. Schoberle, S. Kuhne, Y. Leiner, and C. Hierold, “Fabrication and characterization of folded SU-8 suspensions for MEMS applications,” Sensors and Actuators A-Physical, vol. 130, pp. 379-386, 2006.
[25] K.Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, vol. 70, no. 5, pp. 420-457, 1982
[26] J. E. Sader, “Parallel beam approximation for V-shaped atomic force microscope cantilevers,” Review of Scientific Instruments, vol. 66, no. 9, pp. 4583-4587, 1995.
[27] R. Raymond and J. Raymond, “Roark's formulas for stress and strain,” rev. 6, McGraw-Hill, 1989.
[28] H. S. Khoo, K. K. Liu and F. G. Tseng, “Mechanical strength and interfacial failure analysis of cantilevered SU-8 microposts,” Journal of Micromechanics and Microengineering, vol. 13 pp. 822-831, 2003.

[29] J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties surface
micromachined mirrors with etch holes,” Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 506–513, 1999.
[30] N. Belov and N. Khe, “Using deep RIE for micromachining SOI wafers,” Proceedings Electronic Components and Technology Conference 2002. IEEE, pp. 1163-1166, 2002.
[31] W. Chu, M. Mehregany, D. Hansford, and P. Pirouz, “Effect of thermal oxidation on the residual stress distribution throughout the thickness of p+ silicon films,” Proceedings IEEE Solid-State Sensor and Actuator Workshop, pp. 90-93, 1992.
[32] http://www.ece.gatech.edu/research/labs/vc/processes/rcaClean.html
[33] J. H. Daniel, B. Krusor, R. B. Apte, and R. A Street, “Large-area MEMS fabrication with thick SU-8 photoresist applied to an x-ray image sensor array,” Proceedings of SPIE-the International Society for Optical Engineering, vol. 4174, pp. 40–48, 2000.
[34] D. C. S. Bien, P. V. Rainey, S. J. N. Mitchell, and H. S. Gamble, “Characterization of masking materials for deep glass micromachining,” Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. S34–S40, 2003.
[35] Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor hydrofluoric acid sacrificial release technique for micro electro mechanical systems using labware,” Japanese Journal of Applied Physics. vol. 42, pp. 3690–3694, 2003.
[36] S. Guo and R. Hoffman, “Micro mirror structure with flat reflective coating,” US 6778315 B2, Aug. 17, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔