|
[1] Y. H. Lam and W. H. Ki, “A 0.9V 0.35μm Adaptively Biased CMOS LDO Regulator with Fast Transient Response”, IEEE International Solid-State Circuits Conference, Feb. 2008. [2] H. C. Yang and K. H. Chen, “Current Feedback Compensation (CFC) Technique for Adaptively the Phase Margin in Capacitor-Free Regulators”, IEEE Int’l Midwest Symposium on Circuits and Systems, Aug. 2008. [3] B. M. King, “Understanding the Load-Transient Response of LDOs”, Texas Instruments Analog Application Journal, Nov 2000, pp. 19-21. [4] K. Wong and D. Evans, “A 150mA Low Noise, High PSRR Low-Dropout Linear Regulator in 0.13μm Technology for RF SOC Applications”, European Solid-State Circuits Conference, Sept. 2006, pp. 532-535. [5] K. N. Leung and P. K. T. Mok, “A Capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation”, IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003. [6] C. W. Lin and Y. J. Liu, “A Power Efficient and Fast Transient Response Low Drop-Out Regulator in Standard CMOS Process”, IEEE International Symposium on VLSI Design, Automation and Test, April. 2006. [7] S. Heng and C. K. Pham, “Quick Response Circuit for Low-Power LDO Voltage Regulators to improve Load Transient Response”, IEEE International Symposium on Communications and Information Technologies, Oct. 2007. [8] S. K. Lau, P. K. T. Mok and K. N. Leung, “A Low-Dropout Regulator for SOC with Q-reduction”, IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 658-664, Mar. 2007. [9] B. Razavi, “Design of Analog CMOS Integrated Circuits”, Boston, MA: McGraw Hill, 2001. [10] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design, 2nd ed.”, OXFORD. [11] K. N. Leung, P. K. T. Mok and S. K. Lau, “A low-voltage CMOS low dropout regulator with enhanced loop response”, IEEE International Symposium on Circuits and Systems, vol. 1, pp. 385-388, May 2004. [12] K. C. Kwok and P. K. T. Mok, “Pole-Zero Tracking Frequency Compensation for Low Dropout Regulator”, IEEE International Symposium on Circuits and Systems, vol. 4, pp. 735-738, May 2002. [13] G. A. Rincon-Mora, “Active capacitor multiplier in miller-compensated circuits”, IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 26-32, Jan. 2000. [14] G. A. Rincon-Mora, “Current Efficient, Low Voltage, Low Drop-Out Regulators”, Georgia Institute of Technology, Ph.D Thesis, Nov. 1996. [15] G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator”, IEEE J. Solid-State Circuits, vol. 33, pp. 36-44, Jan. 1998. [16] W. Chen, W. Ki and P. K. T. Mok, “Dual-Loop Feedback for Fast Low Dropout Regulators”, IEEE Powel Electronics Specialists Conference, vol. 3, pp. 1265-1269, Jun. 2001. [17] S. K. Lau, K. N. Leung and P. K. T. Mok, “Analysis of low-dropout regulator topologies for low-voltage regulation”, IEEE Conference Electron Devices and Solid-State Circuits, pp. 379-382, Dec. 2003. [18] K. N. Leung and P. K. T. Mok, “Nested Miller compensation in low power CMOS design”, IEEE Trans. Circuits Syst. II: Analog Signal Process, vol. 48, no. 4, pp. 388-394, Apr. 2001. [19] K. N. Leung and P. K. T. Mok, “Analysis of multi-stage amplifier—frequency compensation”, IEEE Trans. Circuits Syst. I: Analog Signal Process, vol. 48, no. 9, pp. 1041-1056, Sept. 2001. [20] X. Fan, C. Misgra and E. Sanchez-Sinencio, “Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers”, IEEE J. Solid-State Circuits, vol. 40, no. 3, March 2005. [21] K. N. Leung, P. K. T. Mok, W. H. Ki and J. K. O. Sin, “Three-stage large capacitive load amplifier with damping-factor-control frequency compensation”, IEEE J. Solid-State Circuits, vol. 35, pp. 221-230, Feb. 2000. [22] H. Lee and P. K. T. Mok, “Active-feedback frequency compensation technique for low power multistage amplifiers”, IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 511-520, Mar. 2003. [23] X. H. Peng and W. Sansen, “Transconductance with capacitances feedback compensation for multistage amplifiers”, IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1514-1520, July 2005. [24] B. Song and P. R. Gray, “A precision curvature-compensated CMOS bandgap reference”, IEEE J. Solid-State Circuits, vol. 18, pp. 634-643, Dec. 1983. [25] K. N. Leung, P. K. T. Mok and C. Y. Leung, “A 2-V 23-μA 5.3-ppm/oC curvature-compensated CMOS bandgap voltage reference”, IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 561-564, Mar. 2003. [26] K. N. Leung and P. K. T. Mok, “A sub-1 V 15 ppm/oC CMOS Bandgap Voltage Reference without requiring Low Threshold Voltage Device”, IEEE J. Solid-State Circuits, vol. 37, pp. 526-530, Apr. 2002. [27] G. A. Rincon-Mora and P. E. Allen, “A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference”, IEEE J. Solid-State Circuits, vol. 33, pp. 1551-1554, Oct. 1998. [28] S. K. Hoon, J. Chen and F. Maloberti, “An improved bandgap reference with high power supply rejection”, Circuits and Systems, IEEE International Symposium on Circuits and Systems, vol. 5, pp. 883-836, May 2002.
|