跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施凱騰
研究生(外文):Kai-Teng Shih
論文名稱:具多圈電極之液晶變焦透鏡及發展其成像品質評估方法
論文名稱(外文):Design of a Multi-ring LC Lens and Development of its Quantitative Focusing Quality Assessment Method
指導教授:趙昌博
指導教授(外文):Paul C.-P. Chao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:液晶變焦透鏡多圈電極手機相機成像品質
外文關鍵詞:liquid crystal lensmulti-ring electrodescamera in cell phoneimaging quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:543
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文完成具多圈電極之液晶變焦透鏡應用於手機相機的設計。以液晶分子在電場作用下的動態理論做為基礎理論設計,並藉由模擬與分析達到電極圈數的最佳化設計。近年來,由於手機相機搭載自動對焦與變焦系統的趨勢更為彰顯,若液晶變焦透鏡能取代傳統手機鏡頭模組中的透鏡,則可使手機相機同時具備自動對焦與變焦系統並且更為輕巧與降低成本。因此,本文首先根據液晶變焦透鏡的變焦效能來計算實際可取代傳統手機鏡頭模組做為自動對焦與變焦系統的程度。相較於一般手機相機,其鏡頭模組特別需要較短的焦距(約8公分)與較大的孔徑(大於3公厘),然而這也是目前液晶變焦透鏡無法達成的規格。本文為使改善目前液晶變焦透鏡對於手機相機的應用,而建立一套方法可設計具多圈電極之較大孔徑的液晶變焦透鏡。不僅如此,本文針對液晶變焦透鏡的成像品質亦發展其評估方法,基於點擴散函數與調制轉換函數的光學理論計算而成。藉此成像品質評估方法對具多圈電極之液晶變焦透鏡的電極寬度與圈數做最佳化設計,以達成所需之成像品質的要求。而在此設計之中,液晶變焦透鏡的電極圈數得首先決定,再依據其所需電壓與透鏡半徑位置的斜率變化比例關係來設計多圈電極寬度。最後本文以三圈電極之液晶變焦透鏡做為最佳化設計結果,依據其電極圈數持續增加至七圈時的成像品質無明顯提升。而此三圈電極之液晶變焦透鏡的成像品質,其調制轉換函數分別在65%與48%時可解析至5LP/mm與7LP/mm。
The liquid crystal (LC) lens with multi-ring electrodes for cameras in cell phones is designed in this study based on theoretical analysis, simulations and optimization. As the auto-focusing and zooming systems for cameras in cell phones become popular, the applications of a liquid crystal lens to cameras in cell phones provide the advantages such as compact, lightweight, and inexpensive, by replacing the indispensible moving lenses in the traditional lens module. This study starts with the calculations to show that a substantial size reduction of a lens module can be offered by an insertion of LC lens. As compared to conventional cameras, the lens module in phone cameras particularly requires shorter focal length (around 8cm) and larger aperture (greater than 3 mm). The currently available LC lenses, however, fails to provide both the above capabilities. To remedy the problem, the method to design a large-aperture LC lens with multi-ring electrodes is developed in this study, and a new quality-assessment method is developed to evaluate the designed multi-ring LC lens via point spread function (PSF) and modulation transfer function (MTF). The number and widths of the ring-type electrodes are further optimized to reach certain required levels of PSF and MTF for the LC lens. This is achieved by designating a finite number of ring electrodes first and then assigning the width of each electrode proportional to the slope of the required applied voltage along the radius of the LC lens. Optimization results show that the three-ring LC lens with ring widths particularly designed reached satisfactory MTF of 65% for 5 and 48% for 7 line pairs per millimeter, which are not increased significantly even with the ring number increased to seven.
摘要 i
Abstract ii
誌謝 iv
Table of Contents v
Figure Captions vii
Table Titles xi
1 Introduction 1
2 A Liquid Crystal Lens Applied to Cell Phones 5
2.1 Function of Auto Focusing 5
2.1.1 The Traditional Auto Focusing System 5
2.1.2 The New Auto Focusing System including a Liquid Crystal Lens 6
2.2 Function of Zooming 7
2.2.1 The Traditional Zooming System 7
2.2.2 The New Zooming System including Liquid Crystal Lens 8
2.2.2.1 The Zooming System Including Positive Liquid Crystal Lens 9
2.2.2.2 The Zooming System Including Negative Liquid Crystal Lens 12
3. Designing the Liquid Crystal Lens with Multi-ring Electrodes 15
3.1 Theory of Gradient Index Lens 15
3.2 Developing the Design for the Liquid Crystal Lens with Multi-ring Electrodes 17
4. Developing the Quantitative Assessment Method for Imaging Quality 28
4.1 Point Spread Function of the Liquid Crystal Lens 28
4.2 Modulation Transfer Function of the Liquid Crystal Lens by Modulation 32
4.3 Simulation Verification 34
4.3.1 The Structure of Liquid Crystal Lens 34
4.3.2 The Point Spread Function and the Modulation Transfer Function of the Liquid Crystal Lens 35
5 Optimal Design of the Liquid Crystal Lens with Multi-ring Electrodes 36
6 Conclusions and Future Works 38
References 40
Figures 43
Tables 66
自傳 83
[1] J.S. Lee, Y.Y. Jung, B.S. Kim, and S.J. Ko, “An advanced video camera system with robust AF, AE, and AWB control,” IEEE Transactions on Consumer Electronics, v 47, n 3, pp. 694-699 (2001).
[2] J.S. Lee, S.J. Ko, Y. Kim, and A. Morales, “A video camera system with adaptive zoom tracking,” International Conference on Consumer Electronics, pp. 56-57 (2002).
[3] S.Y. Lee, S.S. Park, and C.S. Kim, “Low-power Auto Focus Algorithm Using Modified DCT for Mobile Phones,” International Conference on Consumer Electronics, pp. 67-68 (2006).
[4] S. Sato, “Liquid-crystal lens-cells with variable focal length,” Japanese Journal of Applied Physics, v 18, n 9, pp. 1679-1684 (Sep. 1979).
[5] M. Honma, S. Masuda, T. Nose, and S. Sato, “Optical properties of an anamorphic liquid crystal microlens using an elliptically-patterned electrode structure,” Proceedings of SPIE – The International Society for Optical Engineering, v 3143, pp. 208-213 (1997).
[6] M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Japanese Journal of Applied Physics, v 41, n 5B, pp. 571-573 (May 2002).
[7] M. Ye, B. Wang, and S. Sato, “ Liquid-crystal lens with a focal length is variable in a wide range,” Optical Society of America, v 43, n 35, pp. 6407-6412 (Dec. 2004).
[8] B. Wang, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Japanese Journal of Applied Physics, v 41, n 11A, pp. 1232-1233 (Nov. 2002).
[9] B. Wang, M. Ye, and S. Sato, “Study on Liquid Lens with Curved Electrode,” Proceedings of SPIE, v 6018 (2005).

[10] B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Applied Optics, v 43, n 17, pp. 3420-3425 (Jun. 2004).
[11] H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Applied Physics Letters, v 84, n 23, pp. 4789-4791 (Jun. 2004).
[12] H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Optical Society of America, v 14, n 23 (Nov. 2006).
[13] M. Ye, B. Wang, and S. Sato, “Double-layer liquid crystal lens,” Japanese Journal of Applied Physics, v 43, n 3A, pp. 352-354 (Feb. 2004).
[14] B. Wang, M. Ye, and S. Sato, “Liquid crystal lens woth stacked structure of liquid-crystal layers,” Optical Communications, v 250, pp.266-273 (Feb. 2005).
[15] H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Japanese Journal of Applied Physics, v 43, n 2, pp. 652-653 (Feb. 2004).
[16] H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Applied Physics Letters, v 88, n 19 (May 2006).
[17] B. Wang, M. Ye, and S. Sato, “Liquid crystal negative lens,” Japanese Journal of Applied Physics, v44, n 7A, pp. 4979-4983 (Jul. 2005).
[18] T. Takahashi, M. Ye, and S. Sato, “Wavefront Aberrations of a Liquid Crystal Lens with focal Length Variable form Negative to Positive Values,” Japanese Journal of Applied Physics, v46, n 5A, pp. 2926-2931 (May. 2007).
[19] B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technology Letters, v 18, n 1,pp. 79-81 (Jan. 2006).
[20] M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Japanese Journal of Applied Physics, v 42, n 8, pp. 5086-5089 (Aug. 2003).
[21] Z. He, T. Nose and S. Sato, “Optical Performance of Liquid Crystal Cells with Asymmetric Silt-Patterned Electrodes in Various Applied Field Configurations,” Japanese Journal of Applied Physics, v33, n 2, pp. 1091-1095 (Feb. 1994).
[22] M. Ye, B. Wang, and S. Sato, “Liquid Crystal Lens Driven by Two voltages”, Proceedings of SPIE, v 6018 (2005).
[23] M. Ye and S. Sato, “Two-dimensional focus control for liquid crystal lens,” Proceedings of SPIE, v 5213.
[24] M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Optical Communications, v 225, pp. 227-280 (Jul. 2003).
[25] M. Ye, B. Wang, and S. Sato, “Study of Liquid Crystal Lens with Focus Movable in Focal Plane by Wave Front Analysis,” Japanese Journal of Applied Physics, v45, n 8A, pp. 6320-6322 (Aug. 2006).
[26] M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Optical Communications, v 259, pp. 710-722 (Sep. 2005).
[27] P.-C. Chen, “Optical automatic focuses adjustment system for zoom lens,” National Central University, Department of Optics and Photonics (Jun. 2004).
[28] Largan Precision Co., Ltd, http://www.largan.com.tw/.
[29] M. Katz, Introduction to Geometrical Optics, World Scientific (2002).
[30] E. Hecht, Optics (Fourth Edition), Addison Wesley (2002).
[31] H. J. Deuling, “Deformation of Nematic Liquid Crystals in an Electric Field,” Molecular Crystals and Liquid Crystals, v 19, pp. 123-131 (Feb. 1972).
[32] E. Lueder, Liquid Crystal Displays, John Wiley & Sons Ltd (2001).
[33] M. Gu, Advanced Optical Imaging Theory, Springer (2000).
[34] G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems, SPIE PRESS (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top