(44.192.112.123) 您好!臺灣時間:2021/03/08 15:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧國泰
研究生(外文):Guo-Tai Deng
論文名稱:微量Co元素添加對Sn-0.7Cu無鉛銲錫合金性質的影響研究
論文名稱(外文):The Effect of Minor Co additions on Properties of Sn-0.7Cu Lead-free Solder
指導教授:周長彬周長彬引用關係
指導教授(外文):Chang-Ping Chou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院半導體材料與製程產業專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:Sn-0.7CuCo元素Cu3SnCu6Sn5熔點共晶組成
外文關鍵詞:Sn-0.7Cu-XCoDSCβ-Sn+Cu6Sn5strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要係探討添加微量Co元素對Sn-0.7Cu銲錫合金熔點、機械性質、顯微組織及接合性能方面之影響。
由示差掃描熱量分析中得知添加Co元素後,合金熔點約為227.3℃,且由單一放熱峰得知為共晶組成;顯微組織分析顯示Sn-0.7Cu合金以β-Sn+網狀β-Sn+Cu6Sn5共晶組成為主,添加0.05wt%Co後會析出顆粒狀Sn-Cu-Co化合物,添加0.1wt%Co後則會形成長條狀的Sn2Co。在拉伸性能方面可得知Co元素的添加可改善Sn-0.7Cu合金之強度及延展性。
此外由接合性能實驗結果可發現,Co元素添加可抑制Cu3Sn界面反應物生成,且可增加Sn-0.7Cu銲錫合金銲點接合強度,而隨高溫儲存時間的增加,因為界面反應層的成長,造成銲點衰弱而使破斷位置由銲錫處,移至銲錫與界面反應層處。
In order to study the effect of the addition of Co to the Sn-0.7Cu solder, the formation of an IMC at the interface between Sn-0.7Cu-xCo(x=0, 0.05, 0.1wt%) solders and Cu Substrate were investigated, and the joint strength was also evaluated by tensile test.
From the DSC analysis of Sn-0.7Cu alloys containing various amounts of Co, it was found that the eutectic reaction occurred around 227.3°C. The microstructure of Sn-0.7Cu solder was identified asβ-Sn plus eutectic (β-Sn+Cu6Sn5) by SEM and EDS. Sn-Cu-Co compounds can be found in Sn-0.7Cu solder with 0.05wt%Co. Sn2Co IMCs can be observed in Sn-0.7Cu solder with 0.1wt%Co. Additionally, the results of the tensile test show that the addition of Co elements can improve the mechanical properties of the solder.
After high temperature storage test at 150℃, the growth of interfacial Cu3Sn IMCs was inhibited by the adding of Co into the Sn-0.7Cu solder. The addition of Co elements can improve the joint strength of the solder joints.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 2
第二章 文獻探討 4
2.1 電子構裝技術 4
2.2 銲接 8
2.2.1 波銲 9
2.2.2 迴銲 9
2.3 銲料 10
2.4 銲錫材料無鉛化趨勢 12
2.5 無鉛銲錫合金的性質需求 13
2.5.1 銲錫合金的材料成本 13
2.5.2 銲錫合金的熔點 14
2.5.3 潤濕能力 16
2.5.4 熱膨脹係數 16
2.5.7 附著強度 18
2.5.8 接點界面反應 19
2.5.9 氧化行為 19
2.5.10 抗腐蝕性 20
2.6 無鉛銲錫合金系統 20
2.6.1Sn-Ag合金 20
2.6.2 Sn-Au合金 21
2.6.3 Sn-Bi合金 22
2.6.4 Sn-In合金 23
2.6.5 Sn-Sb合金 24
2.6.6 Sn-Zn合金 25
2.6.7 Sn-Cu合金與Sn-Cu-Co合金 25
2.7 無鉛銲錫合金發展與選用 30
第三章 實驗流程與方法 32
3.1 實驗流程 32
3.2合金融煉 34
3.3示差掃描熱量分析 34
3.4 SEM顯微組織觀察與成份分析 35
3.5拉伸試驗 37
3.6接合性能測試 40
3.6.1試棒備製 40
3.6.2高溫儲存試驗 41
3.6.3 界面組成分析 41
3.6.4 接合強度測試 42
3.6.5 破斷面分析 42
第四章 實驗結果及討論 43
4.1 熱性質分析 43
4.2 顯微組織與成份分析 44
4.3 拉伸性質 48
4.4拉伸破斷面分析 50
4.5接合性能之界面組織分析 53
4.5.1 Sn-0.7Cu合金銲點界面組織分析 53
4.5.2 Sn-0.7Cu-0.05Co合金銲點界面組織分析 55
4.5.3 Sn-0.7Cu-0.1Co合金銲點界面組織分析 56
4.5接合性能之拉伸性質分析 69
第五章 結論 77
參考文獻 79
系所名稱有誤,請寫全稱
參考文獻

[1] P.T. Vianco, D.R. Frear,“Issues in the Replacement of Lead-Bearing Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, pp. 14-19, July 1993.
[2] 謝坤龍,王正全,「PCB無鉛表面處理製程技術之介紹」,工業材料雜誌,207期,159-166頁,民國93年3月。
[3] R.R. Tummala, E.J. Rymaszewski, “Microelectronics packaging handbook” , Van Nostrand Reinhold, New York, 1989.
[4] J. Lau, et al., Electronic Packaging: Design, Materials, Process, and Reliability, McGraw-Hill, Washington, 1998.
[5] 田民波編著,半導體電子元件構裝技術,初版,台北市,五南圖書出版股份有限公司,民國九十四年十月。
[6] 陳信文等編著,電子構裝技術與材料,初版,台北縣五股鄉,高立圖書有限公司,民國九十三年四月。
[7] Armia Rahn, The Basics Of Soldering, John Wiley & Sons, New York, 1993.
[8] Wassink, R.J. Klein. Soldering in Electronics, 2nded., Electrochemical publications, Isle of Man, British Isles, England, 1989.
[9] H. Baker, ASM Handbook v.3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.
[10] J. Glazer,“Metallurgy of low temperature Pb-free solders for electronic assembly” International Materials Reviews, Vol 40, No. 2, p p.65-93, 1995.
[11] M.A. Carroll, M.E. Warwick, “Surface tension of Sn-Pb alloys: part 1 effect of Bi, Sb, P, Ag, and Cu on 60Sn-40Pb solder”, Material Science and Technology, Vol.3, No. 12, p.1040-1045, 1987.
[12] K. Jung, H. Conrad, “Microstructure coarsening during static annealing of 60Sn40Pb solder joints: I stereology”, Jonural of Electronic Materials, Vol. 30, No. 10, pp. 1294-1302, 2001.
[13] K. Jung, H. Conrad, “Microstructure coarsening during static annealing of 60Sn40Pb solder joints: II eutectic coarsening kinetics”, Jonural of Electronic Materials, Vol. 30, No. 10, pp. 1303-1307, 2001.
[14] K. Jung, H. Conrad, “Microstructure coarsening during static annealing of 60Sn-40Pb solder joints: III intermetallic compound growth kinetics”, Jonural of Electronic Materials, Vol. 30, No. 10, pp. 1308-1312, 2001.
[15] 游善溥,「錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究」,國立成功大學,博士論文,民國八十九年。
[16] J. London, D.W. Ashall, “Some Properties of Soldered Joints Made With a Tin/Silver Eutectic Alloy”, Brazing and Soldering, No. 10, pp. 17-20, Spring 1986.
[17] 洪敏雄,游善溥,「電子構裝用無鉛銲錫」,科儀新知,第二十卷二期,57-66頁,民國八十七年十月。
[18] Y. kariya, Y. Hirata, M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X(X=Bi and Cu) solder joints”, Journal of electronic Materials, Vol.28, No.11, pp.1263-1269, May 1999.
[19] S. Ahat, M. Sheng, L. Luo, “Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging”, Journal Of Electronic Materials, Vol. 30, No. 10, pp. 1317-1322, June 2001.
[20] S. Choi, T.R. Bieler, J.P. Lucas, K.N. Subramanian, “Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging”, Journal of Electronic Materials, Vol. 28, No.11, pp. 1209-1215, August 1999.
[21] H.E. Townsend, J.C. Zoccola, “Atmospheric Corrosion Resistance of 55% Al-Zn Coated Sheet Steel: 13 Year Test Results”, Materials Performance, Vol. 18, No.10, pp. 13-20, 1979.
[22] P.L. Liu, J.K. Shang, “Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect”, Scripta Materialia, Vol.44, No. 7, pp. 1019-1023, April 2001.
[23] H.W. Miao, J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Materials Chemistry and Physics, Vol. 71, No. 3, pp. 255-271, 2001.
[24] C.B. Lee, S.B. Jung, Y.E. Shin, C.C. Shur, “The effect of Bi concentration on wettability of Cu substrate by Sn-Bi solders”, Materials Transactions, Vol. 42, No. 5, pp. 751-755, February 2001.
[25] S.H. Huh, K.S. Kim, K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder ”, Materials Transactions, Vol. 42, No. 5, pp. 739-744, January 2001.
[26] J.M. Song, G.F. Lan, T.S. Lui and L.H. Chen, “Microstructure and tensile properties of Sn-9Zn-xAg lead-free solder alloys”, Scripta Materialia, Vol. 48, No. 8, pp. 1047-1051, April 2003.
[27] M. Toshikazu, N. Hiroji, K. Sadao, T. Toshihiko, A. Shozo, O. Ryo, H. Takashi.“Lead-free solder alloys”, United States Patent, No.6241942 B1, June 2001.
[28] 詹益淇,莊東漢,「無鉛銲錫的回顧與最新發展」,電子月刊,第六卷第三期,226-237頁,民國八十九年三月。
[29] D.G. Ivey, “Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications”, Micron, Vol. 29, No. 4, pp. 281-287, August 1998.
[30] ASM Handbook, Vol. 3, Alloy Phase Diagrams, pp. 25-383.
[31] N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, “Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes”, Journal of Power Sources, Vol. 107, No. 1, pp. 48-55, October 2002.
[32] J.W. Morris, Jr., J.L. Freer Goldstein, Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders”, Journal of the Materials, July 1993, pp. 25-27.
[33] L. Liu, C. Andersson, J. Liu, “Thermodynamic Assessment of the Sn-Co Lead-Free Solder System”, Journal Electronic Materials,Vol. 33, No. 9, pp.935-939. March 2004.
[34] P. Sun, C. Andersson, X. Wei, Z. Cheng, D. Shangguan, J. Liu, “Intermetallic compound formation in Sn–Co–Cu, Sn–Ag–Cu and eutectic Sn–Cu solder joints on electroless Ni(P)immersion Au surface finish after reflow soldering”, Materials Science and Engineering , pp. 134~140. August 2006.
[35] J. Bath, C. Handwerker, E. Bradley, “Research Update: Lead-Free Solder Alternatives”, Circuits Assembly, Vol. 11, Iss. 5, pp. 30-40, May 2000.
[36] 汪建民,材料分析,初版,新竹市,中國材料學會,民國八十七年十月。
[37] Grams, Dia., Metal Handbook: metallography structures and phase diagrams, 8th, American Society for Metals, Metals Park, Ohio, 1973.
[38] D.R. Frear, et al., The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York, 1994.
[39] H. Nishikaw, A. Komatsu, T. Takemoto, “Morphology and Pull Strength of Sn-Ag(-Co) Solder Joint”, Journal of Electronic Materials, Vol. 36, No. 9, pp.1137~1143, August 2007.
[40] K.S. Kim, S.H. Huh, K. Suganuma, “Effects of fourth alloying additive on microstructuresand tensile properties of Sn–Ag–Cu alloy and joints with Cu”, Microelectronics Reliability, vol. 43, No. 2, pp.259~267, February 2003.
[41] H. Nishikaw, A. Komatsu, T. Takemoto, “Interfacial Reaction between Sn-Ag-Co Solder and Metals”, Materials Transactions, Vol. 46, No. 11, pp.2394~2399, November 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔