跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/21 23:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊益泉
研究生(外文):Yi-Chuan Yang
論文名稱:溝槽式閘極功率金氧半場效電晶體Qgd特性改善研究
論文名稱(外文):A Study of Qgd Improvement for Trench Gate Power MOSFET
指導教授:吳耀銓
指導教授(外文):Yew-Chung Sermon Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院碩士在職專班半導體材料與製程設備組
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:54
中文關鍵詞:溝槽式閘極功率金氧半場效電晶體閘極-汲極間電荷
外文關鍵詞:Trench Gate Power MOSFETGate-Drain charge
相關次數:
  • 被引用被引用:2
  • 點閱點閱:912
  • 評分評分:
  • 下載下載:172
  • 收藏至我的研究室書目清單書目收藏:0
溝槽式閘極功率金氧半場效電晶體 (Trench Gate Power MOSFET)為高頻低壓的功率元件主流,就其發展藍圖而言,隨著元件密度的提升,閘極-汲極間電荷(Qgd) 會變大,使閘極的充放電速度變慢而影響元件的效能。本論文之研究主要是針對0.4微米之高密度溝槽式閘極功率金氧半場效電晶體Qgd電性參數特性的改善來做探討。我們利用PECVD-TEOS方法在溝槽底部沉積一介電質薄膜來降低高密度功率電晶體Qgd,然而傳統的PECVD的製程溫度大都介於300℃~400℃之間,在此溫度下,介電質薄膜沉積於溝槽底部及側壁的速率幾乎相同,而難以藉由後續製程將介電質薄膜留在溝槽底部。因此我們提高PECVD-TEOS的製程溫度來解決改善此一沉積現象,藉著製程條件最佳化的參數設定,有效地在將介電質薄膜沉積於溝槽式閘極功率金氧半場效電晶體的溝槽底部,成功的降低高密度元件的Qgd,並通過可靠度的測試且可量產之條件。
Trench Gate Power MOSFET is the most popular power device for high frequency and low voltage utilization. The charge from gate to drain (Qgd) will become higher while the device density increasing. This study evaluates the PECVD-TEOS oxide film deposited at trench bottom for 0.4um high density trench gate power MOSFET for device performance improvement.
As we know, the deposition temperature for general PECVD-TEOS process is between 300℃ and 400℃.Under this process temperature condition, the oxide deposition rate is almost the same for trench sidewall and trench bottom. It is hard to keep an oxide film at trench bottom during trench sidewall oxide removed process.
We propose to increase the PECVD-TEOS process temperature to improve deposition ratio of trench bottom to trench sidewall, and an optimum process flow is applied to form a thicker oxide at trench bottom for high density trench gate power MOSFET. The device demonstrates a significant reduction in Qgd, and this process flow is available for production and the products also pass the reliability test.
中文摘要 …………………………………………………………… i
英文摘要 …………………………………………………………… iii
誌謝 ………………………………………………………………… v
目錄 ……………………………………………………………… vi
表目錄 ……………………………………………………………… ix
圖目錄 ……………………………………………………………… x
第一章 緒論 ………………………………………………………… 1
1.1 功率金氧半場效電晶體介紹………………………………… 1
1.2 研究動機 …………………………………………………… 4
第二章 文獻討論 …………………………………………………… 8
2.1 功率金氧半場效電晶體的發展與應用………………………… 8
2.2 化學氣相沉積原理 …………………………………………… 9
2.3 電漿的原理與基本特性 ……………………………………… 11
2.4 電漿增強化學氣相沈積 ……………………………… 14
2.5 PECVD-TEOS製程介紹 ………………………………… 16
第三章 實驗步驟 ……………………………………………… 18
3.1 PECVD-TEOS製程條件 …………………………………… 18
3.2 元件製造流程 …………………………………………… 29
3.3 分析與量測 ……………………………………………… 35
3.3.1 場發射式掃描電子顯微鏡……………………………… 36
3.3.2 穿透式電子顯微鏡……………………………………… 37
3.3.3 閘極啟始電壓 …………………………………………… 38
3.3.4 汲極-源極崩潰電壓 …………………………………… 38
3.3.5 閘極充放電容的電荷量 ……………………………… 39
3.3.6 導通電阻 ……………………………………………… 41
第四章 結果與討論 …………………………………………… 43
4.1 閘極氧化層崩潰電壓 ……………………………………… 43
4.2 閘極充放電容的電荷量測 ………………………………… 45
4.2.1 底氧化層厚度與元件特性 …………………………… 45
4.2.2 溝渠深度與元件特性 ………………………………… 47
4.2.3 元件開關切換速度 …………………………………… 48
第五章 結論 …………………………………………………… 50
參考文獻 ………………………………………………………… 51
作者簡介 ………………………………………………………… 54
[1] D. Ueda, H. Takagi, and G. Kono, “A new vertical power MOSFET structure with extremely reduced on-resistance”, IEEE Trans. on Electron Devices, vol.ED-32, p.2, 1985
[2]D. Ueda, H. Takagi, and G. Kono, “An Ultra-Low On-Resistance Power MOSFET Fabricated by Using Fully Self-Aligned Process”, IEEE Trans. on Electron Devices, vol.ED-34, p.926, 1987
[3]B.J. Baliga, “Trends in Power Discrete Devices” Process of International Symposium on Power Semiconductor Devices, p.5, 1998
[4]B.J. Baliga, “Power Semiconductor Devices”, Boston, MA:PWS, 1998
[5]陳連春,電功率MOSFET應用技術,建興出版社, pp.4-12, 2001
[6]S.M. Sze, “Semiconductor Devices – Physics and Technology”, John Wiley & Sons Inc., 2nd Edition, pp. 218-219, 2001
[7]Mohamed Darwish, Christiana Yue, Kam Hong Lui, Frederick Giles, Ben Chan, Kuo-in Chen, Deva Pattanayak, Qufei Chen, Kyle Terrill, and King Owyang, “A New Power W-Gate Trench MOSFET (WMOSFET) with High Switching Performance”, International Symposium on Power Semiconductor Devices, pp.24-27, 2003
[8]B. Jayant Baliga, “Trends in Power Semiconductor Devices”, IEEE TED Vol.43, No.10, October 1996
[9]陳啟文, 顏培仁, 吳明瑞, 簡鐸欣, 簡鳳佐, 董正暉, 涂高維, 蘇世宗, “淺接面結構對功率電晶體電性改善之研究”, 明新學報, 31期, pp.129-136, 2005年10月
[10]C.Y. Chang, S.M. Sze, ULSI Technology, McGraw-Hill International Editions, 1996
[11]董家齊, 陳寬任, “奇妙的物質第四態—電漿” ,科學發展, 354期, pp.52-59, 2002年6月
[12]T.B. Gorczyca, B. Gorowitz, “ Plasma-Enhanced Chemical Vapor Deposition of Dielectronics”, VSI Electronics Microstructure Science, vol.8, pp. 69-75, 1984
[13]Michael Quirk, Julian Serda, Semiconductor Manufacturing Technology, Pearson Education Inc., 2001
[14]James D. Plummer, Michael D. Deal, Peter B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Pearson Education Inc. 2001
[15]莊達人, VLSI製造技術, 高立圖書有限公司, 2003
[16]Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Perntice-Hall Inc., 2001
[17]Kazuo Maeda, Stephen M. Fisher, “CVD TEOS/O3: Development history and applications”, Solid State Technology, June,1993
[18]K. Fujino, Y. Nishimoto, N. Tokumasu, and K. Meada, “Silicon Dioxide Deposition by Atmospheric Pressure and Low-Temperature CVD Using TEOS and Ozone”, Journal of the Electrochemical Society, Vol.137, No.9, pp.2883-2887,September 1990
[19]S. Nguyen, D. Dobuzinsky, D. Harmon, R. Gleason, and S. Fridmann, “Reaction Mechanisms of Plasma- and Thermal-Assisted Chemical Vapor Deposition of Tetraethylorthosilicate Oxide Films”, Journal of the Electrochemical Society, Vol.137, No.7, pp.2209-2214, July 1990
[20]S. E. Babayan, J. Y. Jeong, A. Schutze, V. J. Tu, Maryam Moravej, G. S. Selwyn, R. F. Hicks, “Deposition of Silicon Dioxide Films With a Non-equilibrium Atmospheric-pressure Plasma Jet” Plasma Source Science and Technology, vol.10, pp.573-578, 2001
[21]周賢鎧, “場發射掃描式電子顯微鏡”, 化工技術, 168期, pp.108-119, 2007年3月
[22]周振嘉, 呂家嘉, “穿透式電子顯微鏡分析原理與實務應用”, 化工技術, 168期, pp.134-150, 2007年3月
[23]Ralph McArthur, “Making Use of Gate Charge Information in MOSFET and IGBT Data Sheet”, Advanced Power Technology, 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top