(3.232.129.123) 您好!臺灣時間:2021/02/26 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李媺如
論文名稱:克雷白氏肺炎桿菌CG43中尿嘧啶雙磷酸葡萄醣去氫酶之磷酸酪胺酸殘基鑑定
論文名稱(外文):Identification of the phosphotyrosine residues in UDP-glucose dehydrogenase of Klebsiella pneumoniae CG43
指導教授:彭慧玲彭慧玲引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:51
中文關鍵詞:克雷白氏肺炎桿菌尿嘧啶雙磷酸葡萄醣去氫酶酪胺酸磷酸化
外文關鍵詞:Klebsiella pneumoniaeUDP-glucose dehydrogenasetyrosine phosphorylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
細菌尿嘧啶雙磷酸葡萄醣去氫酶(UDP-glucose dehydrogenase, Ugd)的酵素活性受可逆的酪胺酸磷酸化的調控。經磷酸化的Ugd活性顯著提升,而經牛小腸鹼性去磷酸酶處理後活性下降。已知,大腸桿菌和克雷白氏肺炎桿菌CG43的酪胺酸激酶Wzc可藉由磷酸化Ugd來調控莢膜多醣體的生成。然而,受磷酸化調控的酪胺酸殘基尚未被確認。本研究藉由質譜儀的技術和序列比對,在克雷白氏肺炎桿菌Ugd所含的17個酪胺酸選了9個酪胺酸殘基,分別在10、91、150、210、217、242、249、265和335的位置,經點突變技術換成苯丙胺酸。再將這幾個定點突變後的蛋白質表現純化後,以磷酸化和去磷酸化的反應,分析其酵素活性。實驗結果發現Y91F和Y210F突變的酵素活性明顯高於野生型;尤其是Y91F突變株最為明顯。相反的,Y10F、Y242F和Y249F突變株測得的酵素活性遠比野生型的酵素低。我們也利用西方墨點法去確認了這些突變株是否有被磷酸化。但是,所有的突變Ugd被KpWzc磷酸化的程度都和野生型Ugd一樣好。由我們的結果可以得知Tyr10、Tyr242和Tyr249殘基對於Ugd酵素的活性影響非常大,而將酪胺酸置換成苯丙氨酸後的Ugd仍可被磷酸化。雖然,本研究結果並未確認被磷酸化調控的酪胺酸殘基,但是經由酵素動力學的實驗結果證實Tyr10、Tyr242和Tyr249殘基對於Ugd酵素活性的重要。
The enzymatic activity of bacterial UDP-glucose dehydrogenase (Ugd) has been shown to be under regulation by a reversible phosphorylation on the tyrosine residues. In Escherichia coli and Klebsiella pneumoniae CG43, the kinase Wzc is responsible for Ugd phosphorylation thereby modulates the synthesis of the polysaccharidic capsule. The phosphorylation of E. coli Ugd resulted in a significant increase of its activity whereas the treatment of Ugd with calf intestine alkaline phosphatase reduced its activity. However, the specific tyrosine residue subjected to the phosphorylation has not been identified. This study attempts to identify the critical tyrosine residues by site-directed mutagenesis of nine of the seventeen tyrosine residues contained in KpUgd, that were selected on the basis of their conserved nature and mass spectrum analysis. These single Tyr-to-Phe mutations of KpUgd were respectively at Tyr10, Tyr 91, Tyr150, Tyr210, Tyr217, Tyr242, Tyr249, Tyr265, and Tyr335. The mutant proteins were purified and their activities, either with or without incubation with KpWzc (Arg451-Lys722) were determined. The activities of UgdY91F and UgdY210F were higher than that of the wild-type Ugd. While UgdY10F, UgdY242F and UgdY249F exhibited a lower activity than that of the wild-type Ugd. We also used western blot hybridization to analyze if the mutations affected the tyrosine phosphorylation. The results indicated that all the Ugd mutants as well as the wild-type protein were able to be phosphorylated by the kinase KpWzc. Taken together, we have shown that the residue Tyr10, Tyr242 and Tyr249 were critical for the Ugd activity. In addition, the replacement of Tyr10, Tyr 91, Tyr150, Tyr210, Tyr217, Tyr242, Tyr249, Tyr265, and Tyr335 with Phe did not abolish the phosphorylation of Ugd. Although the specific tyrosine phosphorylation residue has not been identified, the enzymatic kinetic analysis of the mutant proteins demonstrated the critical role of the residue Tyr10, Tyr242 and Tyr249for Ugd activity.
Abstract in Chinese--------------------------------------Ⅰ
Abstract in English--------------------------------------Ⅱ
Acknowledgement------------------------------------------Ⅳ
Content--------------------------------------------------Ⅵ
Abbreviations--------------------------------------------Ⅶ
Introduction----------------------------------------------1
Materials and Methods-------------------------------------7
Results---------------------------------------------------14
Discussion------------------------------------------------20
References------------------------------------------------24
1. Arakawa Y, Ohta M, Wacharotayankun R, Mori M, Kido N, Ito H, Komatsu T, Sugiyama T, Kato N. 1991. Biosynthesis of Klebsiella K2 capsular polysaccharide in Escherichia coli HB101 requires the functions of rmpA and the chromosomal cps gene cluster of the virulent strain Klebsiella pneumoniae Chedid (O1:K2). Infect Immun. 59(6):2043-50.
2. Alvarez D, Merino S, Tomás JM, Benedí VJ, Albertí S. 2000. Capsular polysaccharide is a major complement resistance factor in lipopolysaccharide O side chain-deficient Klebsiella pneumoniae clinical isolates. Infect Immun. 68(2): 953-955.
3. Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M. 1995. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol. 177(7): 1788-96.
4. Arrecubieta C, López R, García E. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: Sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176(20): 6375–6383.
5. Breazeale SD, Ribeiro AA, Raetz CR. 2002. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. J Biol Chem. 277(4):2886-96.
6. Campbell RE, Mosimann SC, van De Rijn I, Tanner ME, Strynadka NC. 2000. The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. Biochemistry. 39 (23):7012-23.
7. Chang HY, Lee JH, Deng WL, Fu TF, Peng HL. 1996. Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microb Pathog. 20(5):255-61.
8. Cirri P, Chiarugi P, Camici G, Manao G, Raugei G, Cappugi G, Ramponi G. 1993. The role of Cys12, Cys17 and Arg18 in the catalytic mechanism of low-Mr cytosolic phosphotyrosine protein phosphatase. Eur J Biochem. 214(3):647-57.
9. Cozzone AJ, Grangeasse C, Doublet P, Duclos B. 2004. Protein phosphorylation on tyrosine in bacteria. Arch Microbiol. 181(3):171-81.
10. Dalessandro G, Northcote DH. 1977. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar. Biochem. J. 162 (2):267-79.
11. Dougherty BA, van de Rijn I. 1993. Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. J. Biol. Chem. 268(10):7118-24.
12. Ge X, Penney LC, van de Rijn I, Tanner ME. 2004. Active site residues and mechanism of UDP-glucose dehydrogenase. Eur J Biochem. 271(1):14-22.
13. Grangeasse C, Obadia B, Mijakovic I, Deutscher J, Cozzone AJ, Doublet P. 2003. Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem. 10; 278 (41):39323-9.
14. Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I. 2007. Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci. 32(2):86-94.
15. Keynan Y, Rubinstein E. 2007. The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents. 30(5):385-9.
16. Kirstein J, Zühlke D, Gerth U, Turgay K, Hecker M. 2005. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J. 24(19):3435-45.
17. Klein G, Dartigalongue C, Raina S. 2003. Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol. 48(1):269-85.
18. Lacour S, Doublet P, Obadia B, Cozzone AJ, Grangeasse C. 2006. A novel role for protein-tyrosine kinase Etk from Escherichia coli K-12 related to polymyxin resistance. Res Microbiol. 157(7):637-41.
19. Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M. 2007. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics. 6(4):697-707.
20. Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M. 2007. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics. 15.
21. Mijakovic I, Poncet S, Boël G, Mazé A, Gillet S, Jamet E, Decottignies P, Grangeasse C, Doublet P, Le Maréchal P, Deutscher J. 2003. Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J. 22 (18):4709-18.
22. Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D. 2006. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. 34(5):1588-96.
23. Mouslim C, Groisman EA. 2003. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol. 47(2):335-44.
24. Pagni M, Lazarevic V, Soldo B, Karamata D. 1999 Assay for UDPglucose
6-dehydrogenase in phosphate-starved cells: gene tuaD of Bacillus subtilis 168 encodes the UDPglucose 6-dehydrogenase involved in teichuronic Acid synthesis. Microbiology. 145 (5): 1049-1053.
25. Preneta R, Jarraud S, Vincent C, Doublet P, Duclos B, Etienne J, Cozzone AJ. 2002. Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine- protein phosphatase from Klebsiella pneumoniae. Comp Biochem Physiol B Biochem Mol Biol. 131(1):103-12.
26. Rahn A, Drummelsmith J, Whitfield C. 1999. Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J
Bacteriol. 181(7):2307-13.
27. Rahn A, Beis K, Naismith JH, Whitfield C. 2003. A novel outer membrane protein, Wzi, is involved in surface assembly of the Escherichia coli K30 group 1 capsule. J Bacteriol. 185(19):5882-90.
28. Sambrook J, D W Russell. 2001. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor laboratory Press, Cold Spring Harbor, New York.
29. Simoons-Smit AM, Verweij-van Vught AM, MacLaren DM. 1986. The role of K antigens as virulence factors in Klebsiella. J Med Microbiol. 21(2):133-7.
30. Soldo B, Lazarevic V, Pagni M, Karamata D. 1999. Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31(3):795-805.
31. Whitfield C, Roberts IS. 1999. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol. 31(5):1307-19.
32. Whitfield C. 2006. Biosynthesis and assembly of capsular polysaccharides in
Escherichia coli. Annu Rev Biochem. 75:39-68.
33. Wu J, Ohta N, Zhao JL, Newton A. 1998. A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci U S A. 96 (23):13068-73.
34. Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B. 1999. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol. 181(11):3472-7.
35. Vincent C, Duclos B, Grangeasse C, Vaganay E, Riberty M, Cozzone A J, Doublet P. 2000. Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol. 304 (3):311-21.
36. 白平輝 (2004) 克雷白氏肺炎桿菌CG43莢膜多醣體的產生和酪胺酸磷酸化 作用的研究. 國立交通大學 生物科技研究所 碩士論文
37. 李智凱 (2005) 克雷白氏肺炎桿菌CG43中參與莢膜多醣體生合成之核心蛋白Wza、Yor5、Yco6 和Wzx 的功能性研究. 國立交通大學 生物科技研 究所 碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔