(34.237.124.210) 您好!臺灣時間:2021/03/02 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李建弦
研究生(外文):Chien-Hsien Li
論文名稱:高介電常數介電質金屬-絕緣層-金屬電容應用於動態
論文名稱(外文):Study on Metal-Insulator-Metal Capacitors Using High-κ Dielectric for DRAM Application
指導教授:荊鳳德
指導教授(外文):Albert Chin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院微電子奈米科技產業專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:57
中文關鍵詞:高介電係數
外文關鍵詞:High-k
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著超大型積體電路技術的不斷發展、元件尺寸的微縮,閘極介電質的厚度必須降低以維持電容值。由國際半導體技術發展藍圖,我們發現1.5奈米製程以下,降低介電質厚度將使漏電流程呈指數級數增加。因為減低電容的厚度會增加不必要的漏電流,所以使用高介電常數的介電質可能是一種是有效的解決方法。

在本篇論文中,我們研究使用高介電常數介電值的金屬-絕緣層-金屬電容。經由適當的氮電漿處理和退火條件來改善其漏電流,得到高電容密度、低漏電流和簡單介電質製作都是使用此高介電常數介電質(TiNiO)之優點。這樣好的元件特性在未來可能被使用於射頻、類比積體電路和嵌入式系統單晶片之應用。
As the very large scale integration (VLSI) technology continues to be scaled down, the thickness of gate dielectric has to be decreased for maintaining the capacitance value and drive levels. According to ITRS road map, the decrease of dielectric thickness bellow 1.5nm will increase the leakage current exponentially. However, the high-k dielectric is considered as a solution on the issue of devices scalability.

In this thesis, we investigated the improvement on the metal-insulator-metal capacitors using a high-k dielectric combined with a plasma treatment. The high-k TiNiO dielectric shows larger capacitance density and leakage current due to crystallization after higher PDA temperature. To suppress the leakage current of crystallized dielectric, we adopted an optimized N+ plasma treatment on dielectric and the sequent post oxygen annealing. The analysis of the device characteristics in the thesis also unveil the potential of TiNiO Metal-Insulator-Metal (MIM) capacitor for future RF/analog IC application and embedded SoC.
Chinese Abstract……………………………………………………i
English Abstract………………………………………………………………ii
Acknowledgement(in Chinese)…………………………………… iv
Contents………………………………………………………………v

Chapter 1 Introduction
1.1 Motivation…………………………………………………………1
1.2 High- materials for MIM Capacitors…………………………4
1.2.1 High-MIM for RF analog application and DRAM………… 4
1.2.2 Using a High- materials for MIM Capacitors……………6
1.2.3 The advantages of MIM Capacitors…………………………8
1.3 The deposition technologies of high-k dielectrics…… 9
1.4 Thesis………………………………………………………………12

Chapter 2 The Experimental Procedure of High-κMIM
Capacitors Using the TiNiO Dielectric and
Measurements
2.1 The Experimental Procedure……………………………………16
2.2 The Measurement of High-k MIM Capacitors Using TiNiO
Dielectric…………………………………………………………17
2.3 The Structure of fabrication…………………………………18

Chapter 3 The Characteristics and Analysis of High-κ MIM
Capacitors Using the TiNiO Dielectric
3.1 Introduction………………………………………………………26
3.2 C-V characteristics of High-k MIM Capacitors Using the
TiNiO Dielectric…………………………………………………27
3.3 J-V characteristics of High-k MIM Capacitors Using the
TiNiO Dielectric…………………………………………………28
3.4 The Normalized Capacitance Variation ΔC/C and Voltage
Coefficient of Capacitance VCC …………………………… 29
3.5 The Temperature Coefficient of Capacitance …………… 31
3.6 Performance comparison…………………………………………32

Chapter 4 Conclusion
4.1 Conclusions…………………………………………………………… 47
Reference……………………………………………………………… 48
Vita………………………………………………………………………57
Chapter 1

[1.1] Wang Bin, J.S. Suehle, E.M. Vogel and J.B.Berbstein,“Time-dependent breakdown of ultra-thin SiO2 gate dielectrics under pulsed biased stress,”IEEE Electron Device Lett.22,pp.224-226,2001.
[1.2] J. H. Stathis, A. Vayshenker, P. R. Varekamp, E. Y. Wu, C. Montrose, J.McKenna, D. J. DiMaria, L.–K. Han, E. Cartier, R. A. Wachnik and B.P. Linder, “Breakdown measurements of ultra-thin SiO2 at low voltage,”in IEDM Tech . Dig., pp.94-95, 2000.
[1.3] The International Technology Roadmap for Semiconductors: Semicond.Ind.Assoc.,2003.
[1.4] C-M. Hung, Y.-C. Ho, I.-C. Wu, and K. O, “High-Q capacitors implemented in a CMOS process for low-power wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 505-511, 1998.
[1.5] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, pp. 230-232, May 2001.
[1.6] C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of PECVD silicon nitride and silicon oxynitride dielectric for MIM capacitors,” IEEE Electron Device Lett., vol. 24, pp. 506-508, Aug. 2003.
[1.7] L. Y. Tu, H. L. Lin, L. L. Chao, D. Wu, C. S. Tsai, C. Wang, C. F. Huang, C. H. Lin, and J. Sun, “Characterization and comparison of high-κ�n metal–insulator–metal (MIM) capacitors in 0.13μm Cu BEOL for mixed-mode and RF applications,” in Symp. VLSI Tech. Dig., pp. 79–80,2003.
[1.8] Z. Chen, L. Guo, M. Yu, and Y. Zhang, “A study of MIMIM on-chip capacitor using Cu/SiO2 interconnect technology,” IEEE Microwave and Wireless Components Lett., vol. 12, pp. 246-248, July 2002.
[1.9] C. Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, “Dependences of VCC (voltage coefficient of capacitance) of high-k HfO2 MIM capacitors: an unified understanding and prediction,” in IEDM Tech. Dig., pp. 379-382, Dec. 2003.
[1.10] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and Lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., pp. 77-78, 2003.
[1.11] S. J. Kim, B. J. Cho, S. J. Ding, M.-F. Li, M. B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, “Engineering of voltage nonlinearity in high-k MIM capacitor for analog/mixed-Signal ICs,” in Symp. on VLSI Tech. Dig., pp. 218-219, 2004.
[1.12] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M.F. Li, S.J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Fu, A. Chin, and D. L. Kwong, “High Performance HfO2-Al2O3 Laminate MIM Capacitors by ALD for RF and Mixed Signal IC Applications,” in IEDM Tech. Dig., pp. 879-882, 2003.
[1.13] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, “High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applications featuring a single-mask add-on process, in IEDM Tech. Dig., pp. 940-942, 2002.
[1.14] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[1.15] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using High-κ AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 507-510, 2003.
[1.16] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-κ AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[1.17] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., pp. 56-57, 2005.
[1.18] K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, Jiann-Ruey Chen, S. P. McAlister, and C. C. Chi, “Very high density (23fF/μm2) RF MIM capacitors using high-κ TiTaO as the dielectric,” IEEE Electron Device Lett., vol. 26, pp. 728-730, October 2005.
[1.19] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C .C. Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., pp. 62-63, 2005.
[1.20] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, Jiann-Ruey Chen, and C. C. Chi, “High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications,” IEEE Electron Device Lett., vol. 26, pp. 504-506, July 2005.
[1.21] K. C. Chiang, C. C. Huang, H. C. Pan and C. N. Hsiao, J. W. Lin, I. J. Hsieh, C. H. Cheng, C. P. Chou, Albert Chin, H. L. Hwang and S. P. McAlister, “Thermal Leakage Improvement by Using a High Work-Function Ni Electrode in High-κ�� TiHfO MIM Capacitors,” J. Electrochem. Soc., vol. 154, p. G54-57, 2007.
[1.22] W. L. Yang, T. S. Chao, S. C. Chen, C. H. Yang and W. H. Peng, “Improving Electrical Characteristics of High-k NiTiO Dielectric with Nitrogen Ion Implantation,” J. J. Appl. Phys., vol. 45, no. 9a, pp. 6902-6904, 2006.
[1.23] W. L. Yang, T. S. Chao, S. C. Chen, C. H. Yang and W. H. Peng, “Improving Electrical Characteristics of High-κ NiTiO Dielectric with Nitrogen Ion Implantation,” J. J. Appl. Phys., vol. 45, no. 9a, pp. 6902-6904, 2006.
[1.24] T.Shimizu, H. Yamada, A.Kurokawa, K. Ishi and E. Suzuki, “Metalorganic chemical vapor deposited thin film of high-κ La-oxides,”in International Workshop on Gate Insulator, pp.196-198,2001.
[1.25] G.D.Wilk, R. M. Wallace and J.M. Anthony,“High-κ gate dielectrics: Current status and materials properties considerations,”J.Appl. Phys. 89,pp. 5243-5275,2001
[1.26] K. Onishi, Chang Seok Kang, Rino Choi, Hag-Ju Cho, S. Gopalan, R. Nieh, E. Dharmarajan and J.C. Lee,“Reliability characteristics, including NBTI,of polysilicon gate HfO2 MOSFET,”in IEDM Tech Dig.,pp. 30.3.1-30.3.4,2001.
[1.27] J Robertson, “Band offsets of wide-band-gap oxides and implications for future electron devices,” J Vac Sci Technol B, vol. 18, pp. 1785-1791, May 2000.





Chapter 3

[3.1] The International Technology Roadmap for Semiconductors: Semicond. Ind. Assoc., 2003.
[3.2 ] W. L. Yang, T. S. Chao, S. C. Chen, C. H. Yang and W. H. Peng, “Improving Electrical Characteristics of High-κ NiTiO Dielectric with Nitrogen Ion Implantation,” J. J. Appl. Phys., vol. 45, no. 9a, pp. 6902-6904, 2006.
[3.3] S. J. Wan, J. W Chai, Y. F. Dong,Y. P. Feng, N. Sutanto, J. S. Pan and A. C. H. Huan,,”Effect of nitrogen incorporation on the electronic structure and thermal stability of HfO2 gate dielectric,” Applied Physics Letter, vol.88, 192103, 2006.
[3.4] W. L. Yang, T. S. Chao, S. C. Chen, C. H. Yang, and W. H. Peng, Jpn. J. Appl. Phys., Part 1, 45, 6902 _2006_.
[3.5] C. Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, “Dependences of VCC (voltage coefficient of capacitance) of high-k HfO2 MIM capacitors: an unified understanding and prediction,” in IEDM Tech. Dig., pp. 379-382, Dec. 2003.
[3.6] M.Y. Yang, C.H. Huang, A. Chin, C. Zhu, B.J. Cho, M.F. Li, and D. L. Kwong, “Very high density RF MIM capacitors (17fF/μm2) using high-κ Al2O3 doped Ta2O5 dielectrics,” IEEE Microwave & Wireless Comp. Lett., vol. 13, pp. 431-433, Oct. 2003.
[3.7] C. H. Huang, M.Y. Yang, A. Chin, C. X. Zhu, M. F. Li, and D. L. Kwong, “High density RF MIM capacitors using High-κ AlTaOx dielectrics,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 507-510, 2003.
[3.8] S. B. Chen, J. H. Lai, K. T. Chan, A. Chin, J. C. Hsieh, and J. Liu, “Frequency-dependent capacitance reduction in high-κ AlTiOx and Al2O3 gate dielectrics from IF to RF frequency range,” IEEE Electron Device Lett., vol. 23, pp. 203-205, April 2002.
[3.9] C. H. Lai, Albert Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention,” in Symp. on VLSI Technology, pp.54-55, 2006.
[3.10] K.-S. Tan, S. Kiriake, M. de Wit, J. W. Fattaruso, C.-Y. Tsay, W. E. Matthews, and R. K. Hester, “Error correction techniques for high-performance differential A/D converters,” IEEE J. Solid-State Circuits, vol.25, pp. 1318-1327, Dec. 1990.
[3.11] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., pp. 56-57, 2005.
[3.12] K. C. Chiang, C. H. Lai, Albert Chin, T. J. Wang, H. F. Chiu, Jiann-Ruey Chen, S. P. McAlister, and C. C. Chi, “Very high density (23fF/μm2) RF MIM capacitors using high-κ TiTaO as the dielectric,” IEEE Electron Device Lett., vol. 26, pp. 728-730, October 2005.
[3.13] K. C. Chiang, Albert Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., pp. 62-63, 2005.
[3.14] K. C. Chiang, C. C. Huang, Albert Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, Jiann-Ruey Chen, and C. C. Chi, “High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications,” IEEE Electron Device Lett., vol. 26, pp. 504-506, July 2005.
[3.15] K. C. Chiang, C. C. Huang, H. C. Pan and C. N. Hsiao, J. W. Lin, I. J. Hsieh, C. H. Cheng, C. P. Chou, Albert Chin, H. L. Hwang and S. P. McAlister, “Thermal Leakage Improvement by Using a High Work-Function Ni Electrode in High-κ TiHfO MIM Capacitors,” J. Electrochem. Soc., vol. 154, p. G54-57, 2007.
[3.16] C. Zhu, H. Hu, X. Yu, A. Chin, M. F. Li, and D. L. Kwong, “Dependences of VCC (voltage coefficient of capacitance) of high-k HfO2 MIM capacitors: an unified understanding and prediction,” in IEDM Tech. Dig., pp. 379-382, Dec. 2003.
[3.17] S. J. Kim, B. J. Cho, M.-F. Li, C. Zhu, A. Chin, and D. L. Kwong, “HfO2 and Lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. on VLSI Tech. Dig., pp. 77-78, 2003.
[3.18] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M.F. Li, S.J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D.S.H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Fu, A. Chin, and D. L. Kwong, “High Performance HfO2-Al2O3 Laminate MIM Capacitors by ALD for RF and Mixed Signal IC Applications,” in IEDM Tech. Dig., pp. 879-882, 2003.
[3.19] S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, “High capacitance density (>17fF/μm2) Nb2O5 – based MIM capacitors for future RF IC applications,” in Symp. on VLSI Tech. Dig., pp. 56-57, 2005.
[3.20] W. L. Yang, T. S. Chao, S. C. Chen, C. H. Yang and W. H. Peng, “Improving Electrical Characteristics of High-κ NiTiO Dielectric with Nitrogen Ion Implantation,” J. J. Appl. Phys., vol. 45, no. 9a, pp. 6902-6904, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔