跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君翰
研究生(外文):Jun-Han Lin
論文名稱:利用鈷鈦催化金屬合成柱狀結構之奈米碳管之場發射特性的研究
論文名稱(外文):Study on the Field Emission Characteristics of Carbon-Nanotubes Pillar Arrays Using Co/Ti Bi-layered Catalyst
指導教授:鄭晃忠鄭晃忠引用關係
指導教授(外文):Huang-Chung Cheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院微電子奈米科技產業專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:107
中文關鍵詞:奈米碳管場發射陣列
外文關鍵詞:Carbon-NanotubesField EmissionArray
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是針對柱狀結構之奈米碳管場發射陣列進行其場發射特性的研究。由於奈米碳管具有奈米级的管徑,極大的高寬比,堅強的機械性質及穩定的化學性質,因此,一直是極具潛力的場發射顯示器材料。由場發射的測試中,發現奈米碳管具有非常優異的場發射特性;我們利用熱化學氣相沉積系統進行奈米碳管的合成,可惜其密度很高(109~1010/cm2) ,而密度較高的奈米碳管因為電場之遮蔽效應(screening effect)使得其場發射特性並不因其具有較高密度之場發射源而變好; 另外,因為電場的遮蔽效應,柱狀結構之奈米碳管僅有其周圍的奈米碳管會發射電子,因此,我們嘗試成長柱狀型態的碳管陣列,經由成長條件之控制,調變陣列間距與碳管長度的比值,我們發現雖然每個柱狀的碳管密度都很高,但是卻具有極佳的場發射特性。
本論文首先進行柱狀結構之奈米碳管場發射陣列的成長,發現鈷鈦雙層催化金屬(Co/Ti Bi-layered catalyst films)前處理後的顆粒比使用鐵鈦或鎳鈦做催化金屬的顆粒來的小而且均勻,因為催化金屬顆粒均勻可使奈米碳管成長的速率相同,因此,我們順利的利用鈷鈦雙層催化金屬合成高度相當一致的奈米碳管柱狀結構之奈米碳管場發射陣列。
另外,我們使用鈷鈦催化金屬所合成柱狀結構的奈米碳管,並且利用微影的方法來控制柱體和柱體之間的距離以及柱體高度來降低電場遮蔽效應,獲得最佳的場發射特性。根據本實驗,我們發現場發射電流密度與奈米碳管場發射陣列的周長大小有一定比例的關連;再討論到不同柱體間距時,我們發現最佳的場發射特性存在於R/H Ratio(柱體間距與柱體高度的比值) 為2.041時,其起始電場(turn on field)是0.808 V/μm,電流密度(current density)也高達900.1 mA/cm2,並且在固定電場4.33 V/μm 一小時裡,場發射的可靠度亦相當良好,電流的變異大約為6.52 %,其平均電流密度約18.4 mA/cm2,並且在塗佈螢光粉之陽極板上得到均勻之光源,因此,這種鈷鈦催化金屬合成的柱狀結構奈米碳管,具有相當潛力來應用在薄膜電晶體液晶顯示器上的背光源,以有效地降低製造材料成本。
In this thesis, we focus our study on the field emission characteristics of carbon-nanotube (CNTs) pillar arrays. Due to CNTs’ high aspect ratio, well chemical stability, high mechanical strength and small radii of curvature, carbon nanotubes have become the hot material for field emission display. Thermal chemical vapor deposition (TCVD) is used to grow the carbon nanotubes. However, the density of grown CNTs is still very high (109~1010) and is difficult to be controlled. Besides, the electric field is screened because of the closely spaced CNTs, which results in a reduced effective electric field near the CNT emitters. As a result, turn-on electric field increases and emission current density decreases. To obtain the better field emission properties, the density of CNTs should be optimized.
The periphery of the carbon nanotube pillar plays a dominant role on the field emission effect and act as a major emission sites. Then the screen effect of CNTs can be controlled via the lithography-patterned structure of CNT pillar arrays. Therefore the CNT pillar array scheme is not only an effective way to reduce the complexity in processes but also a cost effective way to reduce the cost.
It is reported that uniform size of nanoparticles can easily grow CNTs with the same rate. Therefore, we first study the pretreatment of catalytic film including Ni/Ti, Fe/Ti, and Co/Ti as well as find that nanaparticles obtained by Co/Ti bi-layered are uniform in size and smaller than the other two bi-layered catalysts. We finally grow CNT pillar arrays with uniform length by properly controlling the growth parameters using Co/Ti bi-layered catalyst.
Then, we utilize the proposed method to synthesize CNT pillar arrays to reduce the screening effect via the pillar density design. In our study, we have found that the field emission current density is relevant to the perimeters of the field emission arrays. Finally, by adjusting the inter-pillar distance (R) and height (H) of CNT pillars, the optimization of the field emission characteristics can be obtained. According to our study, the optimum of the field emission is found at R/H ratio of 2.041. The effective turn-on field is as low as 0.808 V/μm. The maximum current density is as high as 900.1mA/cm2. The reliability of the pillar arrays is also determined by a stress test at 4.33 V/μm for 1 hour. Those results show an excellent reliability for the CNT pillars with the current variation coefficient of 6.52 %, and average current density of 18.4 mA/cm2 after the stress. A homogeneous light emission is also observed on the phosphor (P22) coated glasses. As a result, CNT pillars arrays are a potential candidate in the application of the back light unit for TFT-LCDs.
Chapter 1 Introduction
1.1 Overview of Vacuum Microelectronics……………………………………............................1
1.1.1 History……………………………………………………………………………….………1
1.1.2 Applications of Vacuum Microelectronics………………………………………………….3
1.1.3 Field Emission Displays…………………………………………………………………….5
1.2 Materials and Structures of Cathode for Field Emission Displays…………………….6
1.2.1 Theory Background………………………………….………………………………………6
1.2.2 Spindt-type Field Emission……………………………………………...…………………10
1.2.3 BSD Field Emission………………………………………………………………………..12
1.2.4 MIM Field Emission……………………………………………………………………….13
1.2.5 Carbon and Nano-sized Field Emission…………………………………………...……….13
1.2.6 Surface Conduction Electron Emission (SCE)………………………………….…………14
1.3 Synthesis Methods and Field Emission Properties of Carbon Nanotubes…………...14
1.3.1 Structure of Carbon Nanotubes…………………………………………...………………..15
1.3.2 Physical and Chemical Properties of Carbon Nanotubes………………………..…………16
1.3.3 The Synthesis Methods of Carbon Nanotubes……………………………….…………….17
1.3.4 Potential Application of Carbon Nanotube………………………...………………………18
1.4 Thesis Organization…………………………………………………………………..…………19
Chapter 2 Experimental Procedures
2.1 Motivation………………………………………………………………………...………………21
2.2 Growth of Carbon Nanotubes Pillar Arrays Using Ni /Ti, Fe/Ti and Co/Ti Bi-Layered Catalysts……………………………………………………………………………23
2.2.1 Forward Arrangement……………………...………………………………………………23
2.2.2 Experimental Procedures……………………......…………………………………………24
2.3 Field Emission Characteristics with Different Array’s Edges………………….………25
2.3.1 Pixel Design…………………………………………………………………………….….25
2.3.2 CNTs Synthesis………………………………………………………………………….…25
Experiment Condition………………………………………………………………….….26
2.3.3 Different Temperature……………………………………………………………………...27
2.3.4 Co versus Fe………………………………..………………………………………………27
2.4 Field Emission Characteristics with Different Inter-Pillar Distances………………..27
2.4.1 Inter-Pillar Distance Design………………………………………………………………..28
2.4.2 CNTs Synthesis…………………………………………………………………………….28
2.5Analysis…………………………………………………………………….………………...…….28
Chapter 3 Results and Discussion
3.1 Growth of Carbon Nanotubes Pillar Arrays Using Ni/Ti, Fe/Ti and Co/Ti Bi-Layered Catalysts…………………………………………………………………………..30
3.1.1 Effect of H2 pretreatment on Ni /Ti and Fe/Ti bi-layered catalysts………….…………….31
3.1.2 Effect of growth time on the morphology of CNTs grown by Fe/Ti bi-layered catalysts…33
3.1.3 Effect of carbon source flow rates on the morphologyof CNTs grown by Fe/Ti catalyst…34
3.1.4 Effect of H2 pretreatment on Co/Ti bi-layered catalysts……………..……………………35
3.1.5 Effect of growth time on the morphology of CNTs grown by Co/Ti bi-layered catalysts...36
3.1.6 Effect of growth temperature on the morphology of CNTs grown by Co/Ti bi-layered catalysts……………………………………………………………………………………37
3.1.7 SEM and TEM micrographs’ comparison of CNTs grown using (a) Co/Ti (b) Fe/Ti (c) Ni/Ti bi-layered catalyst…………………………………………………………………...38
3.2 The relation between field emission characteristics and perimeter of the field emission arrays……………………………………………………………………………….38
3.2.1 Pixel design…………………………………………………………………………...……39
3.2.2 Optimal growth condition………………………………………………………………….40
3.2.3 Comparison of morphology and field emission characteristics of CNTs grown by Co
catalyst with that by Fe catalyst………………………………….………………………..42
3.3 Field emission characteristics with different R/H ratios………………………………..43
3.3.1 Different R/H Ratios with 40um Inter Pillar Distance……………………….……….……43
3.3.2 Different R/H Ratios with 60um Inter Pillar Distance……………………….……….……44
3.3.3 Different R/H Ratios with 100um Inter Pillar Distance…………………….….…….…….44
3.4 Comparison of Experimental Results with Simulation Results to the Effect of R/H
Ratios on Field Emission Current Density……………………………………………..…..45
3.4.1 Different R/H Ratios with CNTs’ Length is Fixed at 10um………………….……….……45
3.4.2 Different R/H Ratios with CNTs’ Length is Fixed at 34um…………………………..……46
3.4.3 Comparison Result between Experimental and Simulation Results……………………….46
Chapter 4 Summary and Conclusions
4.1 Summary and Conclusions……………………………………………………….…………48
Tables…………………………………………………………………………………………………………………………………51
Figures…………………………………………………………………………………………………………………………………56
References…………………………………………………………………………………………………………………………101
Vita……………………………………………………………………………………………………………………………………107
Chapter 1
[1.1] S. M. Sze, 2nd ed., John-Wiley & Sons pulisher, New York, p. 648, 1981.
[1.2] C. A. Spindt, I. Brodie, L. Humpnrey, and E. R. Westerberg, J. Appl. Phys., Vol. 47, p. 5248, 1976.
[1.3] R. H. Fowler and L. W. Nordheim, Proc. R. SOC. A229, p. 173, 1928.
[1.4] R. Meyer, IVMC’91 Technical Digest, p. 6, 1991.
[1.5] N. E. McGruer and K. Warner, IEEE Trans. Electron Devices, Vol. 38, No. 10, p. 488, 1991.
[1.6] S. E. Huq and L. Chen, J. Vac. Sci. & Technol. B, Vol. 13, No. 6, p. 2718, 1995.
[1.7] D. W. Branston and D. Stephani, IEEE Trans. Electron Devices, Vol. 38, No. 10, p. 2329, 1991.
[1.8] V. V. Zhirnov and E. I. Givargizov, J. Vac. Sci. & Technol. B, Vol. 13, No. 2, p. 418, 1995.
[1.9] J. H. Jung and B. K. Ju, IEEE IEDM’96, p. 293, 1996.
[1.10] H.G. Kosmahl, IEEE Trans. Electron Devices, Vol. 36, No. 11, P. 2715, 1989.
[1.11] P. M. Larry, E. A. Netteshiem, Y. Goren, C. A. Spindt, and A. Rosengreen, IEEE IEDM’88, p. 522, 1988.
[1.12] C. A. Spindt, C. E. Hollard, A. Rosengreen, and I. Brodie, J. Vac. Sci. & Technol. B, Vol. 11, p. 486, Mar./Apr., 1993.
[1.13] C. A. Spindt, Surface Science, Vol. 266, p.145, 1992.
[1.14] T. H. P. Chang, D. P. Kern, et al., J. Vac. Sci. & Technol. B, Vol. 9, p. 438, Mar./Apr., 1991.
[1.15] H. H. Busta, J. E. Pogemiller, and B. J. Zimmerman, J. Micromech. Microeng., p. 45, 1993.
[1.16] H. C. Lee and R. S. Huang, IEEE Transducers- International Solid-State Sensors and Actuators, p. 126, 1991.
[1.17] P. Vaudaine and R. Meyer, IEEE IEDM’91, p. 197, 1991.
[1.18] C. Curtin, International Display Research Conference, p. 12, 1991.
[1.19] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R Westerbeng, IEEE Trans. Electron Devices, Vol. 36, No. 1, P. 225, 1989.
[1.20] David A. Cathey, Information Display, p. 16, Oct.,1995.
[1.21] News reported in Nikkei Electronics ASIA, p. 42, Nov., 1995.
[1.22] R. E. Burgess, H. Kroemer, and J. M. Honston, Phys. Rev., Vol. 1, No. 4, p. 515, 1953.
[1.23] R. B. Marcus, T. S. Ravi, T. Gmitter, H. H. Busta, J. T. Niccum, K. K. Chin, and D. Liu, IEEE Trans. Electron Devices, Vol. 38, p. 2289, 1991.
[1.24] C. A. Spindt, Communications, p. 3504, 1968.
[1.25] R. Meyer, A. Ghis, P. Rambaud, and F. Muller, in Proc. Japan Display, p. 512, Sept./Oct. 1986.
[1.26] S. Itoh AND M. Tanaka, , Proceedings of the IEEE, VOL. 90, NO. 4, APRIL 2002.
[1.27] K. Yamamoto, I. Nomura, K. Yamazaki, S. Uzawa and K. Hatanaka, SID Digest, p. 1933, 2005.
[1.28] T. Oguchi, E. Yamaguchi, K. Sasaki, K. Suzuki, S. Uzawa and K. Hatanake, SID Digest, p. 1929, 2005.
[1.29] Tetsuya Shiroishi, Takao Sawada, and Shuhei Nakata, J. Vac. Sci. Technol. B22(4), Jul/Aug 2004
[1.30] Salvetat J-P, Kulik AJ, Bonard J-M, Briggs GAD, StÖckli T, Metenier K, et
al. Adv Mater 1999,11(2):161–165.
[1.31] Dresselhaus MS, Dresselhaus G and Saito R., Carbon, 1995,33(7), pp.883–891.
[1.32] Gamaly EG and Ebbesen TW, Phys Rev B, 1995,52(3), pp.2083–2089.
[1.33] Guo T, Nikolaev P, Thess A, Colbert DT, and Smalley RE., Chem Phys Lett, 1995,243 (1–2), pp.49–54.
[1.34] M. P. Siegal, D. L. Overmyer, and F. H. Kaatz , App. Phys. Lett., Vol. 84, No. 25, pp. 5156-5158, 2004
[1.35] Yih-Ming Shyu and Franklin Chau-Nan Hong, Diamond and Related Materials 10 2001,pp. 1241-1245
[1.36] Nolan, Peter E., Schabel, Michael J., Lynch, David C, Carbon , Vol. 33 , No. 1 , pp. 79-85 , 1995
[1.37] Mi Chen, Chieng-Ming Chen, and Chia-Fu Chen, Thin Solid Films, 420/421, (2002), pp. 230-234.
[1.38] Mi Chen, Chieng-Ming Chen, Shin-Chen Shi and Chia-Fu Chen, Jpn. J. Appl. Phys. Vol. 42 (2003), pp. 614–619
[1.39] Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai, Science 28 (2000), Vol. 287. no. 5453, pp. 622 - 625
[1.40] Cheng H-M, Yang Q-H, and Liu C., Carbon, 2001,39, pp.1447–1457.
[1.41] Derycke, V., Martel, R.; Appenzeller, J. and Avouris, Ph.,” Carbon Nanotube Inter- and Intramolecular Logic Gates,”Nano Letters (2001), 1(9), pp. 453-456.



Chapter 2
[2.1] W. Lei, B. P. Wang, H. C. Yin, Y. X. Wu, and C. Z. Chang, Nuclear Ins. and Methods in Phys. Research A., 451, p. 389, 2000.
[2.2] N. V. Egorov, and A. A. Almazov, Vacuum 52, p. 295, 1999.
[2.3] O. Groning, O. M. Kuttel, C. Emmenegger, P. Groning, and L. Schlapbach, J. Vac. Sci. & Technol. B., Vol. 18(2), p. 665, 2000.
[2.4] J. H. Choi, T. Y. Lee, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. G. Yu, W. Yi, I. T. Han, and J. M. Kim, Diamond Relat. Mater., 12, p. 794, 2003.
[2.5] J. H. Choi, T. Y. Lee, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. G. Yu, W. Yi, I. T. Han, and J. M. Kim, Thin Solid Films, 435, p. 318, 2003.
[2.6] J. H. Choi, S. H. Choi, J. H. Han, J. B. Yoo, and C. Y. Park, J. Appl. Phys., 94, p. 487, 2003.
[2.7] C. P. Juan, C. C. Tsai, K. H. Chen, L. C. Chen, and H. C. Cheng, Jpn. J. Appl. Phys., 44, p. 8231, 2005.
[2.8] T. G. D. Monsabert, J. Dijon, and P. Gadelle, Carbon, 43, p. 2441, 2005.
[2.9] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M, Bonard, and K. Kern, Appl. Phys. Lett., Vol. 76, No. 15, p. 2071, 2000.
[2.10] J. Li, W. Lei, X. Zhang, X. Zhou, Q. Wang, Y. Zhang, and B. Wang, Appl. Surf. Sci. 220, p. 96, 2003.
[2.11] Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, Appl. Phys. Lett., 75, p. 1086, 1999.
[2.12] Lixin Dong, Subramanian, A. Nelson, B. J., and Yu Sun, Intelligent Robots and systems, p. 3598, 2005.
[2.13] S. H. Jeong, O. J. Lee, S. H. Oh, and C. G. Park, Chem. Mater., Vol. 14, No. 10, p. 4003, 2002.
[2.14] P. L. Chen, J. K. Chang, F. M. Pan, and C. T. Kuo, Diamond Relat. Mater., 14, p. 804, 2005.
[2.15] J. Yotani, S. Uemura, T. Nagasako, H. Kurachi, H. Yamada, T. Ezaki, T. Maesoba, T. Nakao, M. Ito, T. Ishida, and Y. Saito, Jpn. J. Appl. Phys., 43, No. 11B, p. L1459, 2004.


Chapter 3
[3.1] S. Iijima, Nature (London) 354, 56 (1991).
[3.2] L.Nilsson, O.Groening, C.Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, Appl. Phys. Lett. 76, 2071(2000)
[3.3] Y.C. Choi, Y.M. Shin, Y.H. Lee, B. S. Lee, G.S. Park, W. B. Choi, N. S. Lee, and J. M.Kim, App. Phys. Lett., Vol. 76, No. 17, pp. 2367-2369, 2000
[3.4] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell,
and H. Dai, Science 283 (1999) 512.
[3.5] Y.T. Jang, J.H. Ahn, Y.H. Lee and B.K. Ju, Chem. Phys. Lett. 372, 745 (2003)
[3.6] Y.Y. Wei, G. Eres, V.I. Merkulov and D.H. lowndes, Appl. Phys. Lett. 78, 1394 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊