(3.239.159.107) 您好!臺灣時間:2021/03/08 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周誼明
研究生(外文):Yi-Ming Chou
論文名稱:低溫高介電係數材料於有機薄膜電晶體製程之研究
論文名稱(外文):Study of Organic Thin Film Transistor with High-k Material by Using Low-temperature Supercritical Technology
指導教授:劉柏村劉柏村引用關係
指導教授(外文):Po-Tsun Liu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院光電顯示科技產業專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:高介電係數有機薄膜電晶體氧化鉿
外文關鍵詞:high-kpentacenehfo2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
在此論文裡,我們研究了高介電常數材料與薄膜電晶體在超臨界二氧化碳流體混合水的熱處理下其電性的改變並將此高介電常數薄膜為絕緣層製造有機薄膜電晶體。首先,在室溫下,利用真空濺鍍系統成長極薄的氧化鉿薄膜,厚度約為7奈米,為了取代傳統的高溫退火製程,我們使用了溫度約150°C超臨界流體混合水的技術,為了驗證超臨界流體混合水能有效的使水分子進入到氧化鉿,進而減少薄膜的缺陷密度,我們經由紅外線光譜儀、熱脫附常壓游離質譜儀與X射線光電子能譜來做材料分析,結果均顯示於氧化鉿薄膜內氧的含量增加,而厚度為7奈米氧化鉿薄膜在閘極電壓3伏特的操作下,其單位面積漏電流約為2×10-7 A/cm2,並且得到較高的崩潰電壓,崩潰電壓約為24伏特,傳導機制亦由原本未經過處理的量子穿隧效應轉換為熱放射效應,以上主要的原因是由於氧化鉿薄膜的缺陷密度減少。
此外,我們利用經處理過的氧化鉿薄膜為絕緣層去製作有機薄膜電晶體,發現經由超臨界流體技術的處理之後,有機薄膜電晶體有較好的元件特性,其有機薄膜電晶體中的臨界電壓、場效移動率、次臨界擺幅和開關電流比例都有顯著的提升。這些改善主要是因為超臨界流體的技術,能有效修補懸鍵,進而減少氧化鉿絕緣層的缺陷密度。
由這些結果均顯示,藉由超臨界流體混合水的技術,能減少薄膜的缺陷密度。可預期的,若超臨界流體的特殊特性整合在高介電常數材料與有機薄膜電晶體,將具有其優勢。
In this study, supercritical fluids (SCF) technology is employed originally to effectively improve the properties of low-temperature-deposited metal oxide dielectric films and fabricate organic silicon thin film transistors (OTFTs). In this work, 7 nm ultra-thin Hafnium Oxide (HfO2) films are fabricated by sputtering method at room temperature, and replacing the conventional high temperature annealing with supercritical fluids treatment at 150 °C. The supercritical fluids act a transporter to deliver H2O molecule into the HfO2 films for repairing defect states. After this proposed process, the absorption peaks of Hf-O-Hf bonding apparently raise and the quantity of oxygen in HfO2 film increases from FTIR and TDS measurement, individually. The leakage current density of 7 nm HfO2 film is cut down to 2×10-7 A/cm2 at |Vg| = 3 V, and the conduction mechanism is transferred from quantum tunneling to thermal emission because of the significantly reducing the defects in the HfO2 film. Moreover, the higher breakdown voltage is obtained, reaching |Vg| = 24 V.
Additionally, supercritical fluids technology is also proposed to effectively passivate the defect states in HfO2 insulator of OTFTs at low temperature (150 °C). After the treatment of supercritical fluids mixed with water and propyl-alcohol, the characteristics of OTFTs are better.
This proposed technology is also used to improve the transfer characteristics of OTFTs at 150 °C. From theses experimental results, the better sub-threshold swing, lower off-current, higher on/off current ratio and higher mobility are obtained, such that the supercritical CO2 treatment provide a novel method to enhance the transfer
characteristics of Organic thin film transistors
Chinese Abstract ……………………………………………………………………………… i
English Abstract …………………………………………………………………………… ii
Chinese Acknowledgment …………………………………………………………… iii
Contents ………………………………………………………………………………………… iv
Table Captions …………………………………………………………………………… vi
Figure Captions ………………………………………………………………………… vii
Chapter 1 Introduction
1.1 Introduction of Organic Thin-Film Transistors (OTFTs) …………………………1
1.2 Metal Oxide dielectric films (High dielectric constant material, High-k) ……2
1.3 Supercritical Fluid Technology ………………………………………………………2
1.4 Motivation…………………………………………………………………………………3
Chapter 2 Experiment Procedures and Principle
2.1 Fabrication of Metal-Insulator-Silicon (MIS) and Experiment Process………5
2.2 Fabrication of (OTFTs) and Experiment Process……………………………………6
2.3 Properties of Organic Thin Film Transistors
2.3.1 Characteristics of the organic materials……………………………………7
2.3.2 Operation of OTFTs ……………………………………………………………9
2.3.3 Transportation Mechanisms …………………………………………………11
2.3.4 Parameters extraction …………………………………………………………13
Chapter 3 Analysis and Result
3.1 Thin Film Analysis of Electrical Characteristics and Discussion
3.1.1 The current density-electric field (J-E) characteristics ………………15
3.1.2 Conduction Mechanism………………………………………………………15
3.1.3 The capacitance-voltage (C-V) characteristics……………………………20
3.1.4 Breakdown voltage measurement and gate bias stress…………………22
3.2 Thin Film Analysis of Material and Discussion
3.2.1 Fourier Trans-form Infrared Spectroscopy (FTIR) Analysis…………24
3.2.2 Thermal Desorption System – Atmospheric Pressure Ionization Mass
Spectrometer (TDS-APIMS) Analysis……………………………………25
3.2.3 X-ray Photoelectron Spectroscopy (XPS) Analysis……………………25
3.2.4 Transmission Electron Microscopy (TEM) Analysis……………………26
3.3 OTFTs Analysis of Electrical Characteristics and Discussion
3.3.1 The current density-electric field (J-E) characteristics…………………27
3.3.2 The capacitance-voltage (C-V) characteristics……………………………28
3.3.3 Secondary Ions Mass Spectrometer (SIMS) Analysis…………………29
3.3.4 The current-voltage (I-V) characteristics…………………………………30
3.3.5 The DC bias and current stress characteristics……………………………31
3.4 Summary……………………………………………………………………………………32
Chapter 4 Conclusion ……………………………………………………………………34
References ………………………………………………………………………………………63
[1] A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic devices:
Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett. vol.49, pp.1210, (1986).
[2] J. H. Burroughes, C. A. Jones, and R. H. Friend, “Polymer diodes and transistors:new semiconductor device physics”, Nature, vol. 335, pp.137, (1988).
[3] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene organic
thin-film transistors-molecular ordering and mobility”, IEEE Electron Device Lett. vol. 18, pp. 87, (1997).
[4] C. D. Dimitrakopoulos and P. R. L. Malenfant, ”Organic thin film transistors for
large area electronics”, Adv. Mater. (Weinheim, Ger.) 14, No. 2, pp.99, (2002).
[5] Sang Yoon Yang, Se Hyun Kim, Kwonwoo Shin, Hayoung Jeon, and Chan Eon
Park, “Low-voltage pentacene field-effect transistors with ultrathin polymer gate
dielectrics”, Appl. Phys. Lett., vol. 88, pp. 173507, (2006).
[6] Guangming Wang, Daniel Moses, Alan J. Heeger, Hong-Mei Zhang, Mux
Narasimhan, and R. E. Demaray, “Poly(3-hexylthiophene) field-effect transistors
with high dielectric constant gate insulator”, J. Appl. Phys.,vol. 95, pp. 316,
(2004).
[7] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, “Charge-trapping device structure of SiO/ SiN/ high-k dielectric AlO for high-density flash memory ”, Appl. Phys. Lett., vol. 86, 152908, (2005).
[8] G. D. Wilk, R. M. Wallace, and J. M. Anthony,“High-κ gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys.,vol. 89, pp. 5243, (2001).
[9] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, SCIENCE, 300, pp. 1269, (2003).
[10] L. A. Majewski, R. Schroeder, M. Grell, P. A. Glarvey, and M. L. Turner, “High capacitance organic field-effect transistors with modified gate insulator surface”, J. Appl. Phys., 96, pp. 5781, (2004).
[11] K. Zosel, and Angew. Chem. Engl, “Praktische Anwendungen der Stofftrennung mit überkritischen Gasen”, Int. Ed. vol. 17, pp. 702, (1978).
[12] P. M. F. Paul, and W. S. Wise, Mills&Boon, Ltd, (1971).
[13] J. F. Brennecke, and C. A. Eckert, “Phase equilibria for supercritical fluid process design”, AIChEJ, vol. 35, pp1049, (1989).
[14] J. B. Rubin, L. B. Davenhall, C. M. V. Taylor, L. D. Sivils, T. Pierce, and K. Tiefert,“CO 2-Based Supercritical Fluids as Replacements for Photoresist-Stripping Solvents” ,International LANL, (1998).
[15] L. B. Rothman, R. J. Robey, M. K. Ali, and D. J. Mount,“Supercritical fluid processes for semiconductor device fabrication” ,IEEE/SEMI Advanced Semiconductor manufacturing Conference, (2002).
[16] W. H. Mullee, M. A. Biberger, and P. E. Schilling,“Removal of photoresist and residue from substrate using supercritical carbon dioxide process”, United States Patent, Patent 6500605 B1, (2002).
[17] M. Liu, Q. Fang, G. He, L. Q. Zhu, and L. D. Zhang,“Characteristics of HfON thin films by rf reactive sputtering at different deposition temperatures” ,J. Appl. Phys., vol. 101, 034107, (2007).
[18] D. Brassard, D. K. Sarkar, M. A. El Khakani, and L. Ouellet, “High-k titanium silicate thin films grown by reactive magnetron sputtering for complementary metal–oxide–semiconductor applications”, J. Vac. Sci. Technol. A, vol. 22(3), pp. 851, (2004).
[19] Y. Ito, K. Suzulki, and R. Miura, SISPAD 2006., pp. 150, (2006).
[20] S. Ogawa, T. Nasuno, M. Egami, and A. Nakashima, “Formation of mechanically strong low-k film using supercritical fluid dry technology”, Interconnect Tech. Conf., Proc. of the IEEE 2002 International, pp. 220, (2002).
[21] P. T. Liu, C. T. Tsai, T. C. Chang, K. T. Kin, P. L. Chang, C. M. Chen, and H. F. Cheng, “Activation of Carbon Nanotube Emitters by Using Supercritical Carbon Dioxide Fluids with Propyl Alcohol”Electrochem. Solid-State Lett., vol. 9(4), pp. G124, (2006).
[22] P. T. Liu, C. T. Tsai, T. C. Chang, K. T. Kin, P. L. Chang, “Effects of Supercritical Fluids Activation on Carbon Nanotube Field Emitters”, IEEE Trans. Nanotech., vol. 6, pp. 29, (2007).
[23] M. L. Lee and K. E. Markides, “Analytical Supercritical Fluid Chromatography and Extraction. ” , Provo, UT: Chromatography Conferences, (1990).
[24] Lisong Zhou, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, and Thomas N. Jackson, “All-organic active matrix flexible display”, Appl. Phys. Lett., vol. 88, 083502, (2006).
[25] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Appl. Phys. Lett., vol. 80, pp. 1088, (2002).
[26] J. Robertson, “Interfaces and defects of high-k oxides on silicon”, Solid-State Electronics vol. 49 pp. 283, (2005).
[27] H. Klauk, M. Halik, U. Zschieschamg, G. Schmid, W. Radlik. “Polymer gate dielectric pentacene TFT and circuits on flexible substrates”, Technical Digest of IEDM, 557, (2002)
[28] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones. “High performance of organic thin film transistors, in Organic and Polymeric Materilas and Devices”, edited by P. W. M. Blom, N. C. Greenham, D. D. Dimitrakopoulos, and C. D. Frisbie. Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, P. 169,(2003)
[29] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw. “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, Vol 401, pp 685-688 (1999)
[30] G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors”, J. Appl. Phys, Vol 93, pp 6137, (2003)
[31] F. Ebisawa, T. Kurosawa, S. Nara, “Electrical properties of Polycaetylene/polysiloxane interface”, J. Appl. Phys, Vol. 54, pp. 3255-3259, (1983)
[32] L. Sebastian, G. Weiser, and H. Bassler, “Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption”, Chemical Physics, Vol 61, pp 125-135, (1981)
[33] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors”, Appl. Phys. Lett., Vol. 72, pp.1854 (1998)
[34] E. A. Silinsh, and V.Capek, “Organic Molecular Crystals: Their Electronic States “, New York, (1980)
[35] T. Torsi, “Novel applications of organic based thin film transistors”, Solid-State Elecronics, Vol 45, pp 1479-1485, (2001)

[36] G. Horowitz, R. Hajlaoui, P. Delannoy, “Temperature dependence of the field-effect mobility of sexithiophene. Determination of the trap density”, J-Phys III France 5:355-371, (1995)
[37] W. E. Spear and P. G. Le Comber, J. Non-Cryst. Solids 8-10, 727 (1972)
[38] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callefari, J. M. Shaw, “Low-voltage organic transistors on plastic comprising high-dielectric-constant gate insulator”, Science, Vol 283, pp 822-824, (1999)
[39] C. D. Dimitrackopoulos, J. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz, “Low-voltage, high-mobility pentacene transistors with solution-processed high-dielectric constant insulators’, Adv. Mater, Vol 11: 1372-1375, (1999)
[40] I. Muzicante, E. A. Silinsh. “Investigation of local trapping states in organic molecular crystals by method of thermally modulated space-charge limited current. Acta.Phys Pol A (Poland) 88:389-399, (1995)
[41] N. Karl, “Getting beyond impurity-limited transport in organic photoconductors. In K. Sumino, ed, “Defect Control in Semiconductors. Vol. II. Amsterdam : North Holland, pp 1725-1746, (1999)
[42] G. Horowitz, M. E. Hajlaoui, “Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size’, Adv. Mater, Vol 12, pp 1046-1050, (2000)
[43] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, “Temperature and gate voltage dependence of hol mobility in polycrystalline oligothiophene thin-film transistors”, J. Appl. Phys, Vol 87, pp 4456-4463, (2000)
[44] E. A. Silinsh, A. Klimkans, S. Larsson, and V. Capek, “Molecular polaron states in polyacene crystals. Formation and transfer processes”, Chem. Phys, Vol 198, pp 311, (1995)
[45] M. D. J. M. Vissenberg, M. Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B, Vol 57, pp 12964, (1998)
[46] M. Halik, H. Klauk, U. Zscieschang, G. Shmid, C. Dehm, M. Schutz, S. Maisch, F. Effecberger, M. Brunnbauer, and F. Stellacci, “Low-voltage organic transistors with an amorphous molecular gate dielectric”, Nature, Vol 43, pp 963-966, (2005)


[47] W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di,“Current transport in metal/hafnium oxide/silicon structure” ,IEEE Electron Devices Lett. vol. 23, No. 2, (2002).
[48] Takeshi Yamaguchi, Hideki Satake, and Noburu Fukushima, “Band diagram and carrier conduction mechanisms in ZrO/sub 2/MIS structures”, IEEE Trans. Electron Devices, vol. 51, No. 5, (2004).
[49] M. Houssa, M. Tuominen, et al., “Trap-assisted tunneling in high permittivity gate dielectric stacks”, J. Appl. Phys., vol. 87, No. 12, pp. 8615, (2000).
[50] Sanghun Jeon, Hyundoek Yang, Dae-Gyu Park, and Hyunsang Hwang, “Electrical and Structural Properties of Nanolaminate (Al2O3/ZrO2/Al2O3) for Metal Oxide Semiconductor Gate Dielectric Applications” ,Jpn. J.Appl. Phys., vol. 31, pp. 2390-2393, (2002).
[51] Dieter K. Schrodr, Wiley-INTERSCIENCE, (1998).
[52] M. Lenzlinger, and E. H. Snow, “Fowler-Nordheim tunnelling into thermally grown SiO 2”, J. Appl. Phys., vol. 40, pp. 278, (1969).
[53] R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, and N. G. Wright,“Leakage current and charge trapping behavior in TiO2/SiO2 high- gate dielectric stack on 4H-SiC substrate” ,J. Vac. Sci. Technol. B, vol. 25(1), pp. 217, (2007).
[54] P. R. Emtage, and W. Tantraporn, “Schottky Emission Through Thin Insulating Films”, Phys. Rev. Lett., vol. 8, pp. 267, (1962).
[55] J. R. Yeargan, and H. L. Taylor,“Conduction Properties of Pyrolytic Silicon Nitride Films”, J. Appl. Phys., vol. 39, pp. 5600, (1968).
[56] S. W. Huang, and J. G. Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing”, IEEE Trans. Electron Devices, vol. 50, pp. 1658, (2003).
[57] T. FUKUDA, and H. YANAZAWA, “A Novel Method of Removing Impurities from Multilevel Interconnect Materials”, Jpn. J. Appl. Phys., vol. 43 , pp. 936, (2004).
[58] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken, “Correlation between stress-induced leakage current (SILC) and the HfO2 bulk trap density in a SiO2/HfO2 stack”, IEEE 42nd 70Annual International Reliability Physics Symposium, pp. 181, (2004)
[59] H.Y. Yu, X.D. Feng, D. Grozea, Z.H. Lu, R.N.S. Sodhi, A.M. Hor,H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides”Appl. Phys. Lett. 78, 2595, (2001).
[60] J.P. Chang, Y.S. Lin, “Highly conformal ZrO 2 deposition for dynamic random access memory application”J. Appl. Phys. 90, 2964, (2001).
[61] A. Benninghoven, F. G. Rudenauer and H. W. Werner, “Secondary Ion Mass Spectrometry,”(Wiley, New York) p.1227, (1987).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔