|
[1] A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic devices: Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett. vol.49, pp.1210, (1986). [2] J. H. Burroughes, C. A. Jones, and R. H. Friend, “Polymer diodes and transistors:new semiconductor device physics”, Nature, vol. 335, pp.137, (1988). [3] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene organic thin-film transistors-molecular ordering and mobility”, IEEE Electron Device Lett. vol. 18, pp. 87, (1997). [4] C. D. Dimitrakopoulos and P. R. L. Malenfant, ”Organic thin film transistors for large area electronics”, Adv. Mater. (Weinheim, Ger.) 14, No. 2, pp.99, (2002). [5] Sang Yoon Yang, Se Hyun Kim, Kwonwoo Shin, Hayoung Jeon, and Chan Eon Park, “Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics”, Appl. Phys. Lett., vol. 88, pp. 173507, (2006). [6] Guangming Wang, Daniel Moses, Alan J. Heeger, Hong-Mei Zhang, Mux Narasimhan, and R. E. Demaray, “Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator”, J. Appl. Phys.,vol. 95, pp. 316, (2004). [7] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, “Charge-trapping device structure of SiO/ SiN/ high-k dielectric AlO for high-density flash memory ”, Appl. Phys. Lett., vol. 86, 152908, (2005). [8] G. D. Wilk, R. M. Wallace, and J. M. Anthony,“High-κ gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys.,vol. 89, pp. 5243, (2001). [9] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, SCIENCE, 300, pp. 1269, (2003). [10] L. A. Majewski, R. Schroeder, M. Grell, P. A. Glarvey, and M. L. Turner, “High capacitance organic field-effect transistors with modified gate insulator surface”, J. Appl. Phys., 96, pp. 5781, (2004). [11] K. Zosel, and Angew. Chem. Engl, “Praktische Anwendungen der Stofftrennung mit überkritischen Gasen”, Int. Ed. vol. 17, pp. 702, (1978). [12] P. M. F. Paul, and W. S. Wise, Mills&Boon, Ltd, (1971). [13] J. F. Brennecke, and C. A. Eckert, “Phase equilibria for supercritical fluid process design”, AIChEJ, vol. 35, pp1049, (1989). [14] J. B. Rubin, L. B. Davenhall, C. M. V. Taylor, L. D. Sivils, T. Pierce, and K. Tiefert,“CO 2-Based Supercritical Fluids as Replacements for Photoresist-Stripping Solvents” ,International LANL, (1998). [15] L. B. Rothman, R. J. Robey, M. K. Ali, and D. J. Mount,“Supercritical fluid processes for semiconductor device fabrication” ,IEEE/SEMI Advanced Semiconductor manufacturing Conference, (2002). [16] W. H. Mullee, M. A. Biberger, and P. E. Schilling,“Removal of photoresist and residue from substrate using supercritical carbon dioxide process”, United States Patent, Patent 6500605 B1, (2002). [17] M. Liu, Q. Fang, G. He, L. Q. Zhu, and L. D. Zhang,“Characteristics of HfON thin films by rf reactive sputtering at different deposition temperatures” ,J. Appl. Phys., vol. 101, 034107, (2007). [18] D. Brassard, D. K. Sarkar, M. A. El Khakani, and L. Ouellet, “High-k titanium silicate thin films grown by reactive magnetron sputtering for complementary metal–oxide–semiconductor applications”, J. Vac. Sci. Technol. A, vol. 22(3), pp. 851, (2004). [19] Y. Ito, K. Suzulki, and R. Miura, SISPAD 2006., pp. 150, (2006). [20] S. Ogawa, T. Nasuno, M. Egami, and A. Nakashima, “Formation of mechanically strong low-k film using supercritical fluid dry technology”, Interconnect Tech. Conf., Proc. of the IEEE 2002 International, pp. 220, (2002). [21] P. T. Liu, C. T. Tsai, T. C. Chang, K. T. Kin, P. L. Chang, C. M. Chen, and H. F. Cheng, “Activation of Carbon Nanotube Emitters by Using Supercritical Carbon Dioxide Fluids with Propyl Alcohol”Electrochem. Solid-State Lett., vol. 9(4), pp. G124, (2006). [22] P. T. Liu, C. T. Tsai, T. C. Chang, K. T. Kin, P. L. Chang, “Effects of Supercritical Fluids Activation on Carbon Nanotube Field Emitters”, IEEE Trans. Nanotech., vol. 6, pp. 29, (2007). [23] M. L. Lee and K. E. Markides, “Analytical Supercritical Fluid Chromatography and Extraction. ” , Provo, UT: Chromatography Conferences, (1990). [24] Lisong Zhou, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, and Thomas N. Jackson, “All-organic active matrix flexible display”, Appl. Phys. Lett., vol. 88, 083502, (2006). [25] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Appl. Phys. Lett., vol. 80, pp. 1088, (2002). [26] J. Robertson, “Interfaces and defects of high-k oxides on silicon”, Solid-State Electronics vol. 49 pp. 283, (2005). [27] H. Klauk, M. Halik, U. Zschieschamg, G. Schmid, W. Radlik. “Polymer gate dielectric pentacene TFT and circuits on flexible substrates”, Technical Digest of IEDM, 557, (2002) [28] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones. “High performance of organic thin film transistors, in Organic and Polymeric Materilas and Devices”, edited by P. W. M. Blom, N. C. Greenham, D. D. Dimitrakopoulos, and C. D. Frisbie. Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, P. 169,(2003) [29] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw. “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, Vol 401, pp 685-688 (1999) [30] G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors”, J. Appl. Phys, Vol 93, pp 6137, (2003) [31] F. Ebisawa, T. Kurosawa, S. Nara, “Electrical properties of Polycaetylene/polysiloxane interface”, J. Appl. Phys, Vol. 54, pp. 3255-3259, (1983) [32] L. Sebastian, G. Weiser, and H. Bassler, “Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption”, Chemical Physics, Vol 61, pp 125-135, (1981) [33] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors”, Appl. Phys. Lett., Vol. 72, pp.1854 (1998) [34] E. A. Silinsh, and V.Capek, “Organic Molecular Crystals: Their Electronic States “, New York, (1980) [35] T. Torsi, “Novel applications of organic based thin film transistors”, Solid-State Elecronics, Vol 45, pp 1479-1485, (2001)
[36] G. Horowitz, R. Hajlaoui, P. Delannoy, “Temperature dependence of the field-effect mobility of sexithiophene. Determination of the trap density”, J-Phys III France 5:355-371, (1995) [37] W. E. Spear and P. G. Le Comber, J. Non-Cryst. Solids 8-10, 727 (1972) [38] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callefari, J. M. Shaw, “Low-voltage organic transistors on plastic comprising high-dielectric-constant gate insulator”, Science, Vol 283, pp 822-824, (1999) [39] C. D. Dimitrackopoulos, J. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz, “Low-voltage, high-mobility pentacene transistors with solution-processed high-dielectric constant insulators’, Adv. Mater, Vol 11: 1372-1375, (1999) [40] I. Muzicante, E. A. Silinsh. “Investigation of local trapping states in organic molecular crystals by method of thermally modulated space-charge limited current. Acta.Phys Pol A (Poland) 88:389-399, (1995) [41] N. Karl, “Getting beyond impurity-limited transport in organic photoconductors. In K. Sumino, ed, “Defect Control in Semiconductors. Vol. II. Amsterdam : North Holland, pp 1725-1746, (1999) [42] G. Horowitz, M. E. Hajlaoui, “Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size’, Adv. Mater, Vol 12, pp 1046-1050, (2000) [43] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, “Temperature and gate voltage dependence of hol mobility in polycrystalline oligothiophene thin-film transistors”, J. Appl. Phys, Vol 87, pp 4456-4463, (2000) [44] E. A. Silinsh, A. Klimkans, S. Larsson, and V. Capek, “Molecular polaron states in polyacene crystals. Formation and transfer processes”, Chem. Phys, Vol 198, pp 311, (1995) [45] M. D. J. M. Vissenberg, M. Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B, Vol 57, pp 12964, (1998) [46] M. Halik, H. Klauk, U. Zscieschang, G. Shmid, C. Dehm, M. Schutz, S. Maisch, F. Effecberger, M. Brunnbauer, and F. Stellacci, “Low-voltage organic transistors with an amorphous molecular gate dielectric”, Nature, Vol 43, pp 963-966, (2005)
[47] W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di,“Current transport in metal/hafnium oxide/silicon structure” ,IEEE Electron Devices Lett. vol. 23, No. 2, (2002). [48] Takeshi Yamaguchi, Hideki Satake, and Noburu Fukushima, “Band diagram and carrier conduction mechanisms in ZrO/sub 2/MIS structures”, IEEE Trans. Electron Devices, vol. 51, No. 5, (2004). [49] M. Houssa, M. Tuominen, et al., “Trap-assisted tunneling in high permittivity gate dielectric stacks”, J. Appl. Phys., vol. 87, No. 12, pp. 8615, (2000). [50] Sanghun Jeon, Hyundoek Yang, Dae-Gyu Park, and Hyunsang Hwang, “Electrical and Structural Properties of Nanolaminate (Al2O3/ZrO2/Al2O3) for Metal Oxide Semiconductor Gate Dielectric Applications” ,Jpn. J.Appl. Phys., vol. 31, pp. 2390-2393, (2002). [51] Dieter K. Schrodr, Wiley-INTERSCIENCE, (1998). [52] M. Lenzlinger, and E. H. Snow, “Fowler-Nordheim tunnelling into thermally grown SiO 2”, J. Appl. Phys., vol. 40, pp. 278, (1969). [53] R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, and N. G. Wright,“Leakage current and charge trapping behavior in TiO2/SiO2 high- gate dielectric stack on 4H-SiC substrate” ,J. Vac. Sci. Technol. B, vol. 25(1), pp. 217, (2007). [54] P. R. Emtage, and W. Tantraporn, “Schottky Emission Through Thin Insulating Films”, Phys. Rev. Lett., vol. 8, pp. 267, (1962). [55] J. R. Yeargan, and H. L. Taylor,“Conduction Properties of Pyrolytic Silicon Nitride Films”, J. Appl. Phys., vol. 39, pp. 5600, (1968). [56] S. W. Huang, and J. G. Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing”, IEEE Trans. Electron Devices, vol. 50, pp. 1658, (2003). [57] T. FUKUDA, and H. YANAZAWA, “A Novel Method of Removing Impurities from Multilevel Interconnect Materials”, Jpn. J. Appl. Phys., vol. 43 , pp. 936, (2004). [58] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken, “Correlation between stress-induced leakage current (SILC) and the HfO2 bulk trap density in a SiO2/HfO2 stack”, IEEE 42nd 70Annual International Reliability Physics Symposium, pp. 181, (2004) [59] H.Y. Yu, X.D. Feng, D. Grozea, Z.H. Lu, R.N.S. Sodhi, A.M. Hor,H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides”Appl. Phys. Lett. 78, 2595, (2001). [60] J.P. Chang, Y.S. Lin, “Highly conformal ZrO 2 deposition for dynamic random access memory application”J. Appl. Phys. 90, 2964, (2001). [61] A. Benninghoven, F. G. Rudenauer and H. W. Werner, “Secondary Ion Mass Spectrometry,”(Wiley, New York) p.1227, (1987).
|