跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/20 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昱智
研究生(外文):Yu-chih Wang
論文名稱:CFB副產石灰為混凝土膠結材料之配比與特性研究
論文名稱(外文):CFB ashes replace the cementing material in concrete for property and mix design research.
指導教授:黃偉慶黃偉慶引用關係
指導教授(外文):Wei-Hsing Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:139
中文關鍵詞:鈣礬石循環式流體化床鍋爐石油焦
外文關鍵詞:EttringiteCirculating Fluidized Bed BoilerPetroleum Coke
相關次數:
  • 被引用被引用:25
  • 點閱點閱:1857
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
高溫循環式流體化床發電鍋爐(Circulating Fluidized Bed Boiler,簡稱CFB)以燃燒石油焦來發電,為避免燃燒高含硫量之石油焦產生硫氧化物之過量排放,故混合石灰石進行脫硫,所產生之副產物,即CFB副產石灰。
本研究係利用CFB副產石灰具有自我膠結的能力,與水淬爐石粉及卜特蘭水泥混合製成膠結材料,並尋求最佳配比,取代部份的水泥材料,初始能運用於非結構混凝土,以達資源化再利用之目的。
CFB副產石灰依鍋爐內取樣位置不同分成CFB飛灰、床灰、水化灰,皆具有顆粒細小含石膏之特性。研究結果得知,CFB飛灰可與水泥反應產生水化反應,生成鈣礬石,且可對爐石粉產生活化效應而強化其卜作嵐反應,故應用於水泥-爐石粉系統中兼具膠結性及活化劑之功能;CFB飛灰與水泥及爐石粉混合使用時,如CFB飛灰用量不足,漿體晚期強度發展較差,而CFB飛灰用量超過30%時,則漿體早晚期強度會較低,故CFB飛灰使用於水泥-爐石粉系統中存有最佳用量範圍,約在18-22%間。在混凝土試拌方面,參考強度210 kgf/cm2及280 kgf/cm2之配比,在強度方面皆能達到要求。此外,比較CFB飛灰、床灰及水化灰之膠結成效得知,CFB飛灰優於床灰及水化灰。故將CFB飛灰應用於水泥-爐石粉系統中,兼具膠結性及活化劑之功能,顯示CFB飛灰為極具潛力之資源化副產品。
Circulating Fluidized Bed (CFB) Boiler is a means of energy-generating process by burning petroleum coke. In order to avoid blazed petroleum coke with high sulfur content from emitting overdosed sulfur dioxide, limestone is introduced in the boiler for desulfuration. The residue collected from the boiler is called CFB ashes.
In this study, the activating/cementing characteristics of CFB ashes is investigated by blending with granulated blast furnace slag and portland cement. It is intended that CFB ashes can be used in concrete and a method for proportioning CFB ash in concrete can be developed. In accordance with different boiler position, CFB ashes can be classified as fly ash and bed ash, and both have similar chemical compositions, with high contents of gypsum and calcium oxide. The results show that CFB fly ash can react with cement to produce hydration products such as ettringite, and bring the activation of granulated blast furnace slag. It is considered that the CFB ash will act as both cementing material and activator in the cement-granulated blast furnace slag system concurrently. There is an optimum content of CFB ash in the cement/granulated blast furnace slag mixes. The paste strength could be low at later ages, if the CFB fly ash content is too low. Whereas, if the CFB fly ash content is over 30%, the paste strength will be low at the early age. Therefore, it is concluded that the cement-granulated blast furnace slag system will show best performance at the CFB fly ash content between 18% and 22%.
Through proper mix design procedure, mixes containing as less as 20% cement are able to produce concrete with compressive strengths of 210 kgf/cm2 and 280 kgf/cm2, with the addition of 20% CFB fly ash. Besides, using the CFB fly ash in the cement-granulated blast furnace slag system not only improves the cementitious property but also activates the pozzolanic capability of slag. Thus CFB fly ash has been demonstrated to show very good potential in concrete.
圖目錄 III
表目錄 VI
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究內容 2
第二章 文獻回顧 4
2.1 流體化床鍋爐床技術 4
2.1.1 循環式流體化床鍋爐原理 4
2.1.2 CFB副產石灰種類 6
2.1.3 流體化床燃燒脫硫 6
2.2石膏的水化機理 9
2.3 副產石灰(CFB ash)反應機理 11
2.4 影響副產石灰反應之因素 12
2.4.1 f-CaO及SO3的影響 12
2.4.2 細度對副產石灰(CFB ash)的影響 14
2.4.3 無水石膏使用量影響 15
2.4.4 改變養護環境的影響 17
2.4.5 石膏溶解度的影響 19
2.5常見水化產物之種類及特性 20
2.5.1 C-S-H膠體 21
2.5.2 氫氧化鈣(CH) 22
2.5.3 鈣礬石(AFt) 23
2.5.4 單硫型鋁酸鈣(AFm) 23
2.6 卜作嵐材料及其影響 24
2.7 水泥漿體之孔隙水 24
2.8 CFB飛灰運用於混凝土 25
第三章 實驗材料及計畫 27
3.1 試驗材料 27
3.2 試驗設備 32
3.3 試驗內容及方法 41
3.3.1 試驗流程 41
3.3.2 試驗方法 47
第四章 結果與分析 53
4.1副產石灰材料特性與品質穩定性 53
4.1.1 物理性質 53
4.1.2 化學成分分析 60
4.2水泥漿配比試驗 67
4.2.1 CFB飛灰為膠結材料 67
4.2.2 CFB飛灰為活化劑 75
4.2.3固定水泥加爐石粉用量比率 79
4.2.4熱壓健性試驗 83
4.2.5 其他因素 85
4.3 微觀分析 96
4.3.1 掃描式電子顯微鏡(SEM) 96
4.3.2 熱重分析(TGA) 98
4.3.3 化學結合水(chemically combined water) 102
4.4 水泥砂漿配比試驗 103
4.4.1水泥砂漿抗壓強度試驗 103
4.4.2各批砂漿變異性分析 108
4.4.3砂漿體積變化量量測試驗 110
4.5硬固混凝土品質試驗 116
4.5.1初步配比 116
4.5.2混凝土抗壓強度發展 117
4.5.3 CFB飛灰變異性 119
伍、結論與建議 120
5.1結論 120
5.2 建議 121
參考文獻 123
方水連,「溫溼度對水泥漿體巨微觀性質影響之研究」,國立台灣科技大學營建工程研究所碩士學位論文 (1992)。

中國國家標準CNS 10896,「卜特蘭水泥混凝土用CFB飛灰或天然卜作嵐礦物攙料之取樣及檢驗法」,中國國家標準(2003)。

田剛、王紅梅、張凡,「脫硫灰的綜合利用」,能源環境保護學刊,第十七卷,第六期,第49-53頁(2003)。

李東旭、吳學權,「石膏種類對礦渣水泥性能的影響」,水泥工程學刊,第一期,第16-18頁(1999)。

李汝奕,「氟石膏廢渣資源化利用探索與實踐」,安全與環境工程學刊,第十三卷,第一期,第55-59頁(2006)。

沈永年、王和源、林仁益、郭文田,「混凝土技術」,全華科技圖書股份有限公司,台北市(2004)。

林平全,「CFB飛灰混凝土」,科技圖書股份有限公司,台北市(1995)。

翁和德,「循環式流體化床鍋爐技術」,化工技術學刊,第六卷,第九期,第180-193頁(1998)。

黃兆龍,「混凝土性質與行為」,詹氏書局,台北市(1999)。

馮俊達、沈幼庭,「鍋爐原理及計算」,第二版,科學出版社,北京
(1992)。

錢覺時、鄭洪傳、王智、宋遠明、楊娟,「硫化床燃煤固硫灰渣活性評定方法」,煤炭學報,第三十一卷,第四期,第506-510頁(2006)。

蕭遠智,「鹼活化電弧爐還原渣之水化反應特性」,國立中央大學土木研究所碩士學位論文 (2002)。

ASTM C1038 (1995), “Standard Test Method for Expansion of Portland Cement Mortar Bars Stored in Water,” ASTM Designation.

ASTM C471 (1996), “Standard Test Methods for Chemical Analysis of Gypsum and Gypsum Products,” ASTM Designation.

ASTM C227 (1997), “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” ASTM Designation.

ASTM C596 (2000), “Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement,” ASTM Designation.

AASHTO T265-93 (2004), “Laboratory Determination of Moisture of Soils,” AASHTO Designation.


Conn, R. E., Sellakumar, K., and Bland, A.E. (1999), “ Utilization of CFB Fly Ash for Construction Applications,” Proceedings of the 15th International Conference on Fluidized Bed Combustion, Paper No. FBC9-FBC99-0144, Savannah, Ga.

Chugh, Y.P., Patwardhan, A., and Kumar, S. (2007), “Demonstration of
CFB ash as a cement substitute in concrete pier foundations for a
Photo-Voltaic power system at SIUC,”2007 World of Coal Ash(WOCA), Covington, Kentucky, U.S.A.

Iribarne, J., Iribarne, A., Blondin, J. and Anthony, E.J. (2001), “Hydration
of combustion ashes- a chemical and physical study,” Fuel, 80, 773-784.

Jackson, N.M., Mack, R., Schultz, S. and Malek, M.(2007), “Pavement
Subgrade Stabilization and Construction Using Bed and Fly Ash,”World of Coal Ash (WOCA), 7-10.

Jazairi, B. E. and Illston, J. M. (1980), “The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry,” Cement and Concrete Research, 10, 361-366.

Li, D., Zhong F.,Guo, Q. and Lu, J. (2007), “Properties of flash hydrated
and agglomerated particles of CFB fly ashes,” Fuel, 88, 215-220.

Poon, C.S., Kou, S.C. and Lin, Z.S. (2001), “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4),” Cement and Concrete Research 31, 873-881.


Sheng, G., Li,Q., Zhai, J., and Li, F. (2007), “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, 37, 871-876.

Sievert, T.,Wolter, A., and Singh, N.B. (2005),“ Hydration of anhydrite of gypsum(CaSO4.Ⅱ) in a ball mill,” Cement and Concrete Research, 35, 623-630.

Wang, J.,Wu, Y., and Anthony, E.J. (2005), “ The hydration behavior of partially sulfated fluidized bed combustor sorbent,” Ind. Eng. Chem. Res., 44, 8199-8204.

Yan, P., and You, Y. (1998), “ Studies on the binder of fly ash- fluorgypsum -cement,” Cement and Concrete Research, 28(1), 135-140.

Young, J. F., Mindess, S. and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top