跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/15 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林郁靜
研究生(外文):Yu-ching Lin
論文名稱:以實驗方法探討人工濕地之水質淨化效益
論文名稱(外文):The performance of water treatment efficiencies of a laboratory scale experimental constructed wetland
指導教授:吳瑞賢吳瑞賢引用關係
指導教授(外文):Ray-Shyan Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:去除率人工溼地污水
外文關鍵詞:wastewateraverage removal efficiencconstructed wetlands
相關次數:
  • 被引用被引用:15
  • 點閱點閱:822
  • 評分評分:
  • 下載下載:213
  • 收藏至我的研究室書目清單書目收藏:0
人工濕地處理汙水為一經濟實惠且又具有美觀及教育的自然淨化程序。本研究利用實驗室模型進行實地模擬人工濕地系統,以置於中央大學校區內之中大湖為研究對象。模型長1.2公尺、寬0.3公尺及高0.3公尺,設於大型通風實驗室,以人工取樣及水閥控制其進流量,並以連續而穩定的方式進入實驗反應槽中。
本研究主要研究目的,在於比較經人工濕地之模擬渠道後,出流水及放流水水質之情況。利用人工濕地對各項污染物之去除效能做比較及分析。結果顯示,對各污染物之去除效率分別為:生化需氧量(BOD)之去除效率為83.64%、懸浮固體物(SS) 之去除效率為96.39%、氨氮(NH4-N) 之去除效率為80.64%、硝酸鹽氮之去除效率為70.6%及亞硝酸鹽氮之去除效率為4.88%。與文獻相比較去除效果較高,推測本研究之流量較小、停留時間較長有充裕的時間去除各汙染物質。再以進-出流水的去除效果進而討論污水經處理後之循環再利用性及其功能性。
此外,亦採人工濕地之斷面探討各階段性之去除效率;就整體而言,各斷面皆有其去除效果,本系統之最佳停留時間並非為停留時間最長的3.79天,而是距進流口90cm處的2.84天為最佳停留時間;本結果顯示,並非停留時間越長,其去除效率越好,故停留時間的設定乃是人工濕地是否成功之最重要的要素之一。
The constructed wetland is one of the natural treatment systems and a Green Ecological Engineering Technology process of low energy requirement, low cost, no secondary pollution and ease of operation. The main study purpose is to compare the difference of the water quality between effluent water which was through the purification of constructed wetland system and current river quality, so that we can confer and evaluate the feasibility of the retrieve effluent water through the constructed wetland system..
In this study, the experiment setup of the constructed wetland in National Central University in treating septic tank effluent was monitored. The average removal efficiency within four months operation period are: BOD5(83.64%)、SS(96.39%)、NO3-N (70.6%)、NO2-N(4.88%)and NH4-N(80.64%). Compared with literatures, mostly higher removal efficiency may be because of longer hydraulic retention time. The quality of the discharged water from constructed wetland meets the requirements of “The Discharge Standare”. In this case, the best hydraulic retention time is 2.84 days not 3.79days, It is concluded that hydraulic retention time is one of the important design criteria in the constructed wetland.
摘要 I
ABSTRACT II
謝誌 III
目錄 V
表目錄 X
圖目錄 XI
符號表 XIII

第一章 前言 1
1.1研究動機 1
1.2研究目的與方向 1

第二章 文獻回顧 3
2.1濕地 3
2.1.1濕地的定義 3
2.1.2濕地的組成 3
2.2人工濕地 7
2.2.1人工濕地的分類與應用 8
2.2.2人工濕地的型態 8
2.2.3人工濕地的介質特性 9
2.2.4 人工濕地的當優缺點 9
2.2.5人工濕地淨化水質機制 9
2.2.5.1 懸浮固體物的去除機制 10
2.2.5.2 有機物的去除機制 10
2.2.5.3 氮的去除機制 11
2.3傳輸機制 15
2.3.1 水的傳輸機制 15
2.3.2氮的傳輸機制 16
2.4 校園人工濕地 17
2.4.1校園人工濕地之特質與優點 17
2.4.2國內人工濕地處理案例 17

第三章 研究方法與步驟 20
3.1人工濕地系統配置 20
3.1.1水樣概述 20
3.1.2人工濕地模型配置 22
3.1.3介質 26
3.2實驗藥品 26
3.3實驗設備與裝置 27
3.4水質分析方法 27
3.4.1採樣 27
3.4.2水質分析項目與分析方法 28
3.5污染物處理效能之評估 30

第四章 理論分析 31
4.1 模式推導 31
4.1.1 基本假設 31
4.1.2 模式推導 32
4.1.3 模式求解 35

第五章 結果與討論 36
5.1系統進流-出流之水質濃度變化及去除率 37
5.1.1 生化需氧量之濃度變化與去除率 37
5.1.2 懸浮固體物之濃度變化與去除率 37
5.1.3 氨氮之濃度變化與去除率 38
5.1.4 亞硝酸氮之濃度變化與去除率 39
5.1.5 硝酸氮之濃度變化與去除率 40
5.2系統各斷面之水質濃度變化及其去除率 41
5.2.1 生化需氧量之各斷面濃度變化及其去除率 42
5.2.2 懸浮固體物之各斷面濃度變化及其去除率 42
5.2.3 氨氮之各斷面濃度變化及其去除率數 43
5.2.4 亞硝酸氮之各斷面濃度變化及其去除率 43
5.2.5 硝酸氮之各斷面濃度變化及其去除率 44
5.3現場監測 44
5.3.1酸鹼度 44
5.3.2溫度 45
5.3.3 溶氧 46
5.4系統內部質點濃度變化 47
5.4.1生化需氧量質點濃度變化量 47
5.4.2懸浮固體物質點變化量 48
5.4.3氨氮質點變化量 48
5.4.4硝酸鹽氮質點變化量 49
5.4.5亞硝酸鹽氮質點變化量 49
5.5模式求解 49

第六章 結論與建議 67
6.1結論 67
6.1建議 68
參考文獻 69
1.左惠文,「以人工濕地處理校園污水之功能性深討」,嘉南藥理科技大學環境工程與科學系碩土論文,2004。
2.左惠文、李得元、荊樹人、林瑩峰、張翊峰、簡淑娟、郭乃文,「光華女中人工溼地處理校園污水之功能探討」,第29 屆廢水處理技術研討會論文集,2004 。
3.吳先琪等譯,Gabriel Bitton原著,(廢水微生物學),第83-92頁及294頁,曉園出版社,台北,2000。
4.李志源,「利用人工濕地三級處理生活污水」,國立台灣海洋大學河海工程學系碩士論文,1997。
5.李志源、李駿智、鄭舜仁、張鈞凱,「布袋蓮人工濕地之功能評估」,第22屆廢水處理技術研討會論文集, 1997。
6.林欣怡,「以礫石床人工濕地去除工業廢水之研究」,中山大學海洋環境及工程學碩士論文,2000。
7.施孟亨,「成大人工濕地維護管理之研究」,國立成功大學建築研究所環境控制組,2006。
8.荊樹人、李得元、林瑩峰、王姿文、何茂賢、魏家美、張庭憲,「經人工溼地處理後校國廢污水再利用探討」,第6屆水再生及再用研討會,2001。
9.荊樹人,「人工濕地之規劃設計理念及案例介紹」,生態工法人才培訓講習會,2003。
10.荊樹人、林瑩峰、李得元、王姿文、謝紫煌、葉宇光,「水力負荷對人工溼地處理污染河水中氮磷之影響」,第25 屆廢水處理技術研討會,2000。
11.郭文健、張立弘,「生活污水之溼地處理及再利用研究」,第6屆水再生及再用研討會,2001。
12.陳志彰,「人工溼地改善水質之績效」,國立台灣海洋大學河海工程學系碩士論文,2000。
13.陳柏州,「以人工濕地淨化水質之研究」,國立高雄第一科技大學環境興安全衛生工程系碩士論文,2004。
14.黃壹煌,「去除地下水硝酸鹽之人工溼地的動態變化研究」,嘉南藥理科技大學環境工程與科學系碩士論文,2005。
15.歐文生、林憲德、荊樹人,「景觀化人工濕地淨化校園污水效益與公共衛生之研究」,中華民國建築學會,2006。
16.顏宛珍,「以人工溼地處理校園化糞池出流水之研究」,台灣科技大學化學工程系碩士論文,2006。
17.羅瑋琪,「以人工溼地處理煉油及煉鋼廢水之研究」,國立中山大學海洋環境及工程學系碩士論文,2002。
18.Baltzis, B. C., Steven, M. W., and Shareefdeen, Z.(1997)“ModelinBiofiltration of VOC Mixtures under Steady-state Conditions.”Journal of Environmental Engineering-ASCE, June, pp. 599-605.(1997)
19.Bruce E. R., and Perry L. M., “Environmental Biotechnology: Principles and Applications”, McGraw-Hill Higher Ed. New York., pp. 435-499(2001)
20.Bougare, D., N. Bernet, D. Cheneby and J. P. Delgenes, “Nitrification of a High-Strength Watewater in an Inverse Turbulent Bed Reactor: Effect of Temperature on Nitrite Accumulation”, Process Biochemistry, Vol. 41, No. 1, pp. 106-113(2006)
21.Dialynas, G., N. Kefalakis, M. Dialynas and A. Angelakis, “Performance of an Innovative FWS Constructed Wetland in Crete, Greece”, Water Science and Technology, Vol.46, No.4-5, pp. 355-360 (2002)
22.Drizo, A., C. A. Frost, J. Grace and K. A. Smith, “Phosphate and Ammonium Removal by Constructed Wetlands with Horizontal Subsurface Flow Using Shale as a Substrate”, Water Science and Technology, Vol. 35, pp. 95-102(1997)
23.Gray, S., J. K. P. Read and A. Marland, “Nutrient Assimilative Capacity of Maerl as a Substrate in Constructed Wetland Systems for Waste Treatment”, Water Research, Vol. 34, No. 8, pp.2183-2190 (2000)
24.Haberl, R. and Perfler, R., “Seven years of research work and experience with wastewater treatment by a reed bed system”. In: Constructed Wetlands in Water Pollution Control (Adv. Wat. Pollut. Control no 11), P.F. Cooper and B. Findlater (eds), Pergamon Press, Oxford, pp.205-214.( 1990)
25.Huddleston, G. M., B. W. Gillespie and H. J. Rodgers, “Using Constructed Wetland to Treat Biochemical Oxygen Demand and Ammonia Associated with Refinery Effluent”, Ecotoxicology and Environmental Safety, Vol. 45, No. 2, pp. 188-193 (2000)
26.Huang, J.,R. B. Reneau and Jr. C. Hagedorn, “Nitrogen Removal in Constructed Wetlands Employed to Treatment Domestic Wastewater”, Water Research, Vol. 34, No.9, pp. 2582-2588(2000)
27.Jos. T.A. Verhoeven, Arthur F.M. Meuleman, “Wetlands for wastewater treatment: Opportunities and limitations”, Ecological Engineering 12, pp.5-12(1999)
28.Jing, S. R. and Y.F. Lin, “Seasonal Effect on Ammonia Nitrogen Removal By Constructed Wetlands Treating Polluted River Water in Southern Taiwan”, Environmental Pollution, Vol. 127, No. 2, pp. 291-301(2004)
29.Jing, S. R. Y. F. Lin and T. W. Wang, “Using Constructed Wetland Systems to Remove Solids from Highly Polluted River Water”, Water Science and Technology: Water Supply, Vol. 1, No. 1, pp. 89-96(2001a)
30.Jing, S. R., Y. F. Lin, D. Y. Lee and T. W. Wang, “Nutrient Removal from Polluted River Water by Using Constructed Wetlands”, Bioresource Technology, Vol. 76, No. 2, pp. 131-135(2001b)
31.Jing, S. R., Y. F. Lin, T. W. Wang and D. Y. Lee, “Microcosm Wetlands for Wastewater Treatment with different Hydraulic Loading Rates and Macrophytes”, Journal of Environmental Quality, Vol. 31, No. 2, pp. 690-696(2002)
32.Kao, C. M., J. Y. Wang, H. Y. Lee and C. K. Wen, “Application of a Constructed Wetland for Non-Point Source Pollution Control”, Water Science and Technology, Vol. 44, No. 11-12, pp. 585-590(2001)
33.K.P. Reddy and E.M. D’ Angelo., “Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands.” pp.1-10. 61.( 1997)
34.Lin, Y. F., S. R. Jing, D. Y. Lee and T. W. Wang, “Removal of Solids and Oxygen Demand from Aquaculture Wastewater with A Constructed Wetland System in the Start-Up Phase”, Water Environment Research, Vol. 74, No. 2, pp. 136-141(2002)
35.Lin, Y. F., S. R. Jing, T. W. Wang and D. Y. Lee, “Effects of Macrophytes and External Carbon Sources on Nitrate Removal from Groundwater in Constructed Wetlands”, Environmental Pollution, Vol. 119, No. 3, pp. 413-420(2002)
36.Mashauri, D. A., D. M. M. Mulungu and B. S. Abdulhussein, “Constructed Wetland at The University of Dar Es Salaam”, Water Reserarch, Vol. 34, No. 4, pp. 1135-1144 (2002)
37.Metcalf and Eddy, Inc. “Wastewater Engineering: Treatment, Disposal and Reuse (3rd ed.)”. McGraw-Hill, New York.( 1991)
38.Merlin, G., J. L. Pajean and T. Lissolo, “Performances of Constructed Wetlands for Municipal Wastewater Treatment in Rural Mountainous Area”, Hydrobiologia, Vol. 469, pp.87-98(2002)
39.Neralla, S., R. W. Weaver, Lesikarv and R. A. Persyn, “Improvement of Domestic Wastewater Quality by Subsurface Flow Constructed Wetlands”, Bioresource Technology, Vol. 75, No. 1,pp.19-25 (2000)
40.Perdomo, S., C. Bangueses and J. Fuentes, “Potential Use of Aquatic Macrophytes to Enhance the Treatment of Septic Tank Liquid”, Water Science and Technology, Vol. 40, No.3, pp.225-232 (1999)
41.Pollock, S.V., S. L. Colombo, Jr. D. L. Prout, A. C. Godfrey and J. V. Moroney, “Rubisco Activase is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas Reinhardtii in a Low-CO2 Atmosphere”, Plant Phsiology, Vo1.133, No. 4, pp. 1854-1861(2003)
42.Randall,C. W.,Barnard,J. L. and Stensel,H. D., “Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal”, Technology Publishing Company,(1992)
43.Tadesse, I., F. B. Green and J. A. Puhakka, “Seasonal and Diurnal Variations of Temperature, pH and Dissolved Oxygen in Advanced Integrated Wastewater Pond Systems Treating Tannery Effluent”, Water Research, Vol.38, No. 3, pp. 645-654 (2004)
44.Tchobanoglous, G, F. L. Burton and H. D. Stensel, Wastewater Engineering Treatment and Reuse, fourth ed., Metcalf and Eddy(2004)
45.Vincent G., Dallaire, S. and Lauzer, D.,. “Antimicrobial properties of roots exudates of three macrophytes: Mentha aquatica L., Phragmites australis (Cav.) Trin. and Scirpus lacustris L. In: Preprinted Wetland Systems for Water Pollution Control, Proc. Conf., ICWS Secretriat, Guangzhou, P.R. China, pp. 290-296.( 1994)
46.Vijayaraghavan, S. and D. Y. Goswami, “Photocatalytic Oxidation of Toluene in Water from an Algae Pond with High Dissolved Oxygen Content”, Journal of Solar Energy Engineering, Transactions of the ASME, Vol. 125, No 2, pp. 230-232 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊