(3.227.208.0) 您好!臺灣時間:2021/04/18 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王淑娥
研究生(外文):Shu-E Wang
論文名稱:奈米金觸媒之改質與氫氣純化之應用
論文名稱(外文):The application of modified gold catalysts for hydrogen purification
指導教授:陳郁文陳郁文引用關係
指導教授(外文):Yu-Wen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:136
中文關鍵詞:金觸媒二氧化鈰二氧化鈦一氧化碳選擇性氧化氧化銅氧化鈷氧化鑭
外文關鍵詞:gold catalystCeO2TiO2CuOxLa2O3CoOxPROX
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於全球面臨嚴重的能源短缺問題,各種替代能源的開發與研究日漸增加。目前備受矚目的燃料電池,主要利用甲醇蒸氣重組為氫氣來源,其中富含大量的一氧化碳,利用金觸媒對一氧化碳的高選擇性氧化特性,使其進料濃度低於5 ppm,避免毒化白金電極。
本研究以初濕含浸法製備複合性之金屬氧化物擔體,四氯化氫金為金的前驅物,於pH值為7且控制溫度在65 ℃,利用沉積沉澱法將奈米級金顆粒擔載於金屬氧化物上。經過180 ℃鍛燒四小時後,金觸媒具有高分散與熱穩定性,應用於燃料電池操作溫度範圍下,能有效的將一氧化碳去除。並以X光繞射分析儀(XRD)、穿透式電子顯微鏡 (TEM)、X光電子能譜儀 (XPS)和感應耦合電漿質譜分析儀 (ICP-MS)等儀器鑑定金觸媒的特性。
根據文獻可知二氧化鈦對一氧化碳的氧化有良好之催化效果,也是被研究與應用最多的擔體,但其在高於80 ℃時活性有大幅下降的趨勢;因此引入高溫下具高活性的二氧化鈰修飾擔體表面組成,其二氧化鈰/二氧化鈦最佳莫耳比例為1/9,高溫轉化率皆在80 %以上,選擇率為40~50 %。由於氫氣與一氧化碳會進行競爭性氧化反應,如何有效的提高選擇率是主要關鍵。研究指出氧化鑭與氧化鈷具有提高擔體活性與穩定性之功效,而氧化銅/二氧化鈰可有效催化一氧化碳的氧化反應。選用此三種添加劑於金/二氧化鈰-二氧化鈦中,發現氧化銅在80 ℃時能大幅提高轉化率和選擇率。實驗數據顯示氧化銅有抑制氫氣氧化的能力,且同時具有類似貴金屬的活性,故以含浸法將氧化銅單獨添加於氧化鈦上。最佳觸媒為金/氧化銅-二氧化鈦(4.8:95.2),其一氧化碳的轉化率在50~100℃下可達100%,高溫選擇率在60%之上。將觸媒隔絕光線照射儲存一個月後,其活性在高溫下差異不大;而暴露於光線照射一個月後,高溫活性約為90 %。值得注意的是本觸媒在80 ℃長時間測試下,以穿透式電子顯微鏡觀察其金顆粒仍然以粒徑2~3nm的半球狀均勻分散於擔體表面,金的表面電子組態也漸從氧化態還原成元素態,轉化率在經過49小時測試後,從100%略微下降到95%,選擇率維持在65 %以上。本研究透過擔體表面與金顆粒間的特殊作用力,有效的避免奈米金顆粒因反應或溫度影響所造成的聚集,維持長時間的活性及穩定性。
Recently, the whole world faces energy crisis such as oil shortages and natural resources shortages. Various development and study of alternative energy grow progressively. Increased attention now turns to development of fuel cell-powered system, because of their low environment impact. It is well known that 0.5–1 vol. % of CO usually present in the hydrogen fuel from the water-gas shift reactor will poison the Pt electrode. Supported gold catalysts, which can oxidize CO in H2-rich stream (PROX) effectively by applying its unique catalytic property to reduce CO concentration less than 5 ppm, is practicable.
In this study, multiple metallic oxides are prepared by impregnation method. Hydrochloro-auric acid is the gold precursor used to load on the support by deposition-precipitation method at pH 7 and 65 °C. The catalysts were calcined at 180 °C for 4 h. The gold particles have high dispersion and thermal stability. In the fuel cell operating temperature range (50–100 °C), gold catalysts can remove CO almost completely. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS).
According to literature, TiO2 has been widely used in the synthesis of supported gold catalysts and active for selective CO oxidation. But its activity decreases obviously when the temperature reaches above 80 °C. CeO2, which is active at high temperature were added to Au/TiO2 to modify its catalytic performance. 1 wt.%Au/CeO2-TiO2 (Ce/Ti = 1/9) has the CO conversion higher than 80% and CO selectivity around 40–50% at temperatures around 50–100 °C. In thermodynamic aspect, hydrogen will compete with CO for oxygen at high temperature. The method to improve the CO selectivity is the key point. La2O3 and CoOx can increase the catalytic activity and stability. CuOx-CeO2 has the ability to catalyze CO oxidation and increase the selectivity. Hence, they were chosen as additives to Au/CeO2-TiO2 for PROX reaction. The results indicated that CuOx can improve the catalytic performance at 80 °C surprisingly. It is suggested that CuOx may inhibit the oxidation and have the activity similar to noble metal (i.e., Au and Pt). When CuOx and TiO2 alone were used to prepare binary metal oxides support by impregnation method, 1wt%Au/CuOx-TiO2 (Cu/Ti = 4.8/95.2) is the best catalyst. The CO conversion can reach 100 % at 50–100 °C and the CO selectivity is 70 % at 80°C. In order to study the effect of storage, catalysts were stored without light (~25°C) for one month, the activity slightly decreased. However, those stored in the presence of light, the CO conversion was maintained about 90 %. It is worthy of attention that even after 80 °C for 49 h, Au/CuOx-TiO2 (Cu/Ti = 4.8/95.2) maintained high activity. From TEM analysis, it was observed that the gold particles still form hemispherical particles with the diameter of 2–3 nm, and well-dispersed on the support. The Au3+ becomes Au0 gradually after reaction, as analyzed from XPS results. The CO conversion decreased from 100 % to 95 % and CO selectivity was maintained above 60 %. It is due to the unique interaction between support and gold particles, and the prevention of aggregation caused by reaction and temperature.
Chapter 1. Introduction
1.1 Background of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01
1.2 The short history of catalytic gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03
1.3 The applications for gold catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05
1.3.1 Pollution and emission control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05
1.3.2 Chemical processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08
1.3.3 Fuel cell applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 2. Gold apply in PROX
2.1 Preparation methods of catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Effect of particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Effect of support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Effect of promoter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.5 Kinetics and mechanisms of CO oxidation . . . . . . . . . . . . . . . . . . . . . . . . . .26
Chapter 3. Experiment
3.1 Chemicals and reactants
3.1.1 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Reactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Catalysts preparation
3.2.1 Preparation of the CeO2-TiO2 supports by impregnation . . . . . . . . . . 33
3.2.2 Preparation of the MOx-CeO2-TiO2 supports by impregnation . . . . . . 33
3.2.3 Preparation of the CuOx-CeO2-TiO2 support by co-impregnation . . . .33
3.2.4 Preparation of the CuOx-TiO2 support by impregnation . . . . . . . . . . . 34
3.3 Loading gold on supports by DP method . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Characterization
3.4.1 X-ray diffraction (XRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.4.2 Transmission electron microscope (TEM) . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 X-ray photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Inductively coupled plasma mass spectrometry (ICP-MS) . . . . . . . . . 37
3.5 The test of catalytic activity for CO oxidation . . . . . . . . . . . . . . . . . . . . . . . 38
Chapter 4. Au/CeO2-TiO2 catalysts for selective CO oxidation
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
4.2 The effect of Ce/Ti ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Chapter 5. Effect of additives to CeO2-TiO2 (10:90)
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
5.2 Effect of the additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Chapter 6. Au/CuOx-TiO2 catalysts for selective CO oxidation
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
6-2 Effect of Cu/Ti ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6-3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Chapter 7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
[1] Choudhary, T.V. and D.W. Goodman, “CO-free fuel processing for fuel cell applications,” Catal. Today, 77, 65 (2002)
[2] Korotkikh, O. and R. Farrauto, “Selective catalytic oxidation of CO in H2: fuel cell applications,” Catal. Today, 62, 249 (2000)
[3] Avgouropoulos, G., T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar and H.K. Matralis, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen,” Catal. Today, 75, 157 (2002)
[4] Igarashi, H., H. Uchida, M. Suzuki, Y. Sasaki and M. Watanabe, ” Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite,” Appl. Catal. A: Gen., 159, 159 (1997)
[5] Avgouropoulos, G., J. Papavasiliou, T. Tabakova, V. Idakiev and T. Ioannides, “A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation in H2-rich gas,” Catal. Lett., 76, 143 (2001).
[6] Kandoi, S., A.A. Gokhale, L.C. Grabow, A.C. Dumesic and M. Mavrikakis, “Why Au and Cu are more selectivity than Pt for preferential oxidation of CO at low temperature,” Catal. Lett., 93, 93 (2004)
[7] Corti, C.W., R.J. Holliday and D.T. Thompson, “Commercial aspects of gold catalysts,” Appl. Catal. A: Gen., 291, 253 (2005)
[8] Bone, W.A. and R.V. Wheeler, Philos. Trans., 206A, 1 (1906)
[9] Bone, W.A. and G.W. Andrew, Proc. Roy. Soc. A, 109, 409 (1925)
[10] Tanaka, K. and K. Tamaru, “A general rule in chemisorption of gases on metals,” J. Catal., 2, 366 (1963)

[11] Bond, G.C., “The catalytic properties of gold,” Gold Bull., 5, 11 (1972)
[12] Bond, G.C. and P.A. Sermon, ”Gold catalysts for olefin hydrogenation,” Gold Bull., 6, 102 (1973)
[13] Sermon, P.A., G.C. Bond and P.B. Wells, “Hydrogenation of alkenes over supported gold,” J. Chem. Soc., Faraday Trans., I75, 385 (1979)
[14] Ozin, G.A., “Metal atom matrix chemistry. Correlation of bonding with chemisorbed molecules,” Acc. Chem. Res., 10, 21 (1977)
[15] McIntosh, D. and G.A. Ozin, “Synthesis of binary gold carbonyls, Au(CO)n (n = 1 or 2). Spectroscopic evidence for isocarbonyl(carbonyl)gold, a linkage isomer of bis(carbonyl)gold,” Inorg. Chem., 16, 51 (1977)
[16] Hutchings, G.J., “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts,” J. Catal., 96, 292 (1985)
[17] Schwank, J., “Gold in bimetallic catalysts,” Gold Bull., 18, 1 (1985)
[18] Iizuka, Y., H. Fujiki, N. Yamauchi, T. Chijiiwa, S. Arai, S. Tsubota and M. Haruta, “Adsorption of CO on gold supported on TiO2,” Catal. Today, 36, 115 (1997).
[19] Assefa, Z., B.G. McBurnett, R.J. Staples, J.P. Fackler, B. Assmann, K. Angermaier and H. Schmidbaur, “Syntheses, Structures, and Spectroscopic Properties of Gold(I) Complexes of 1,3,5-Triaza-7-phosphaadamantane (TPA). Correlation of the Supramolecular Au.cntdot. .cntdot. .cntdot.Au Interaction and Photoluminescence for the Species (TPA)AuCl and [(TPA-HCl)AuCl],” Gold Bull., 34, 75 (1995)
[20] “Gold catalyst for removal of nitrogen oxide and method for removing nitrogen oxide,” Japanese Patent Application JP 4281846, AIST (1992)
[21] Control of malodor, Japanese Patent Application JP 5115748, Matsushita
Electric Ind. (1993)
[22] Luck, F., “Wet air oxidation: past, present and future,” Catal. Today, 53, 81 (1999)
[23] Besson, M., A. Kallel, P. Gallezot, R. Zanella and C. Louis, “Gold catalysts supported on titanium oxide for catalytic wet air oxidation of succinic acid,” Catal. Commun., 4, 471 (2003)
[24] Meischen S., “Proceedings of the GOLD 2003, Vancouver,” Canada, September–October (2003)
[25] Pattrick,G., E. van der Lingen, C.W. Corti, R.J. Holliday and D.T. Thompson, “The Potential for Use of Gold in Automotive Pollution Control Technologies: A Short Review,” Top. Catal., 30–31, 273 (2004)
[26] Kajikawa, O., X.S.Wang, , T. Tabata and O.Okada, “Catalytic Destruction of Dioxins over Gole-deposited Metal Oxides,” Organohalogen Comp., 40, 581 (1999).
[27] Bond, G.C.and D.T. Thompson, “Catalysis by Gold,” Catal. Rev. Sci. Eng.,41, 319 (1999)
[28] Hutchings, G.J., “Catalysis: A Golden Future,” Gold Bull., 29, 123 (1996)
[29] “Epoxidation of olefins using molecular oxygen and hydrogen involves catalyst comprising gold on support material,” Patent Application WO 200158887, Bayer AG (2001)
[30] “Catalyst for the production of epoxide comprises carrier containing oxide of titanium and/or zirconium, and gold fine particles fixed on the carrier,” Patent Application US 2001020105, Nippon Shokubai (2001)
[31] Haruta, M., “Size- and support-dependency in the catalysis of gold,” Catal. Today, 36, 153 (1997)
[32] Landon, P., P.J. Collier, A.J. Papworth, C.J. Kiely and G.J. Hutchings, “Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst,” Chem. Commun., 2058 (2002)
[33] “Process for producing hydrogen peroxide,” Patent Application WO 02064500, Arco (2002)
[34] Zhao R., D. Ji, G. Lv, G. Qian, L. Yan, X. Wang and J. Suo, “A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant,” Chem. Commun., 7, 904 (2004)
[35] “Gold-zeolitic oxidation catalysts for the conversion of cyclohexane into cyclohexanone and cyclohexanol,” US Patent 2004258103 A1, August (2004)
[36] A.M. Venezia, V. La Parola, V. Nicolı`, G. Deganello, “Effect of Gold on the HDS Activity of Supported Palladium Catalysts,” J. Catal., 212, 56 (2002)
[37] Buchanan,D.A. and G. Webb, “Catalysis by group IB metals. Part 1.—Reaction of buta-1,3-diene with hydrogen and with deuterium catalysed by alumina-supported gold,” J. Chem. Soc., Faraday Trans., 71, 134 (1975)
[38] Okumura, M., T. Akita and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” Catal. Today, 74, 265 (2002)
[39] Jia, J., K. Haraki, J.N. Kondo and K. Tamaru, ”Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst,” J. Phys. Chem. B, 104, 11153 (2000)
[40] Rossi, M. in: “Proceedings of the GOLD 2003,” Vancouver, Canada, September–October (2003)
[41] Mirescu, A., U. Pruesse and K.-D. Vorlop, in: “Proceedings of the 13th International Congress on Catalysis,” Paris, France, July, 5 (2004)
[42] Cameron, D., R. Holliday and D. Thompson, “Gold’s future role in fuel cell systems,” J. Power Sources, 118, 298 (2003)
[43] Andreeva, D., ” Low Temperature Water Gas Shift over Gold Catalysts, “Gold Bull., 35, 82 (2002)
[44] Daté, M., M. Okumura, S. Tsubota and M. Haruta, “Vital role of moisture in the catalytic activity of support of gold nanoparticles,” Angew. Chem. Int. Ed., 43, 2129
(2004)
[45] Grisel, R., K.-J.Westgate, A. Gluhoi and B.E. Nieuwenhuys, “Catalysis by Gold Nanoparticles,” Gold Bull., 35, 39 (2002)
[46] Bockris, J.O’M. and A.J. Appleby, “Assessment of research needs for advanced fuel cells,” S. Penner (Ed.), Energy, 11, 110 (1986)
[47] Zhong, C.-J., J. Luo, M.M. Maye, L. Han and N. Kariuki, “Proceeding of the GOLD 2003”, Vancouver, Canada, September–October (2003)
[48] Maye, M.M., J. Luo, L. Han, N.L. Kariuki and C.-J. Zhong, “Synthesis, processing, assembly & activation of core-shell structured gold nanoparticle catalysts,” Gold Bull., 36, 75 (2003)
[49] Haruta, M., “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and application,” Gold Bull., 37, 27 (2004)
[50] Moreau, F., G.C. Bond and A.O. Taylor, “Gold titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,” J. Catal., 231, 105 (2005)
[50] Valden, M., X. Lai, and D.W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science, 281, 1647 (1998)
[51] Wolf, A. and F. Schüth, “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” Appl. Catal. A: Gen., 226, 1 (2002)
[52] Moreau, F., G.C. Bond and A.O. Taylor, “Gold titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold content,” J. Catal., 231, 105 (2005)
[53] Schubert, M. M., V. Plzak, J. Garche and R. J. Behm, “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas,” Catal. Lett., 76, 143 (2001).
[54] Grisel, R.J.H. and B.E. Nieuwenhuys, “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts,” Catal. Today, 64, 69 (2001)
[55] Dekkers, M.A., M.J. Lippits and B.E. Nieuwenhuys, “Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions,” Catal. Today, 54, 381 (1999)
[56] Chang, F.W., H.Y. Yu, L.S. Roselin, H.C Yang and T.V. Ou, “Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides,” Appl. Catal. A : Gen., 302, 157 (2006)
[57] Avgouropoulos, G., J. Papavasiliou, T. Takakova, V. Idakiev and T. Ioannides, “ A comparative stidy of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction,” Chem. Eng. J., 124, 41 (2006)
[58] Holfund, G.B., S.D. Gardner, D.R. Schryer, B.T. Upchurch and E.J. Kielin, “Au/MnOx catalytic performance characteristics for low-temperature carbon monoxide oxidation,” Appl. Catal. B, 6, 117 (1995)
[59] Cant, N.W. and N.J. Ossipoff,”Cobalt promotion pf Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides,” Catal. Today, 36, 125 (1997)
[60] Gluhoi, A.C., N. Bogdanchikova and B.E. Nieuwenhuys, “The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria,” J. Catal., 229, 154 (2005)
[61] Russo, N., D. Fino, G. Saracco and V. Specchia, “Supported gold catalysts for CO oxidation,” Ctala. Today, 117, 214 (2006)
[62] Haruta M., S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet and B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal., 144, 175 (1993)
[63] Cho, A., “Connecting the Dots to Custom Catalysts,” Science, 299, 1684 (2003)
[64] Bond, G.C. and D.T. Thompson, “Gold-catalysed oxidation of carbon monoxide,” Gold Bull., 33, 41 (2000)
[65] Liu, Z.P., P. Hu, and A. Alavi, “Catalytic Role of Gold in Gold-Based Catalysts: A Density Functional Theory Study on the CO Oxidation on Gold,” J. Am. Chem. Soc., 124, 14770 (2002)
[66] Rossignol, C., S. Arrii, F. Morfin, L. Piccolo, V. Caps and J.L. Rousset, “Selective oxidation of CO over model gold-based catalysts in the presence of H2,” J. Catal., 230, 476 (2005)
[67] Klug, H.P. and L.E. Alexander, X-ray Diffraction Procedures, second ed., Wiley, New York, 642 (1974)
[68] Valden, M., S. Pak, X. Lai and D.W. Goodman, “Structure sensitivity of CO oxidation over model Au/TiO2 catalysts,” Catal. Lett., 56, 7 (1998)
[69] Schubert, M.M., S. Hackenberg, A.C. van Veen M. Muhler, V. Plzak and R.J. Behm, “Palladium-catalyzed telomerization of butadiene with ethylene glycol in liquid single phase and biphasic systems: control of selectivity and catalyst recycling,” J. Catal., 197, 113 (2001)
[70] Pillai, U.R. and S. Deevi, “Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide,” Appl. Catal. A, 299, 266 (2006)
[71] Andreeva, D., V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinoa and A. Travlos, “Low-temperature water-gas shift reaction over Au/CeO2 catalysts,” Catal. Today, 72, 51 (2002)
[72] Solsona, B.-E., T. Garcia, C. Jones, S.-H. Taylor, A.-F. Carley and G.-J.Hutchings, “Supported gold catalysts for CO oxidation,” Catal. Today, 117, 214 (2006).
[73] Nian, J.N., S.A. Chen, C.C. Tsai and H. Teng, “Supported feature and catalytic performance of Cu species distributed over TiO2 nanotubes,” J. Phys. Chem. B, 110, 25817 (2006)
[74] Huang, J., S. Wang, Y. Zhao, X. Wang, S. Wang, S. Wu, S. Zhang and W. Huang, “Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation,” Catal. Commun., 7, 1029 (2006)
[75] Schryer, D.R., B.T. Upchurch, B.D. Sidney, K.G. Brown, G.B. Hoflund and R.K. Herz, “A proposed mechanism for Pt/SnOx-catalyzed CO oxidation,” J. Catal., 130, 314 (1991)
[76] Schryer, D.R., B.T. Upchurch, J.D. Van Norman, K.G. Brown and J. Schryer, “Effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 lasers,” J. Catal., 122, 193 (1990)
[77] Gardner, S.D., G.B. Hoflund, B.T. Upchurch, D.R. Schryer, E.J. Kielin and J. Schryer, “Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation,” J. Catal., 129, 114 (1991)
[78] Friedman, R.M., J.J. Freeman and F.W. Lytle, “Characterization of Cu/Al2O3 catalysts,” J. Catal., 55, 10 (1978)
[79] Liu, W. and M. Flytzani-Stephanopoulos, “Transition Metal-Promoted Oxidation Catalysis by Fluorite Oxides: A Study of Carbon Monoxide Oxidation over Cu-CeO2,” Chem. Eng. J., 64, 283 (1996)
[80] Xiao-Feng Yu, Nian-Zu Wu, You-Chang Xie and You-Qi Tang, “A monolayer dispersion study of titania-supported copper oxide, ” J. Mater. Chem., 10, 1629 (2000)
[81] J. Bandara, C. P. K. Udawatta and C. S. K. Rajapakse, “Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O,” PPS, 4, 857 (2005)
[82] Chnag, S.S., H.J. Lee and H.J. Park, Cer. Inter., 31, 411 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔