跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳曉旻
研究生(外文):Hsiao-min Wu
論文名稱:氧化鋅-氧化鐵複合擔載金-銀雙金屬觸媒應用於甲醇部分氧化產製氫氣之研究
論文名稱(外文):Hydrogen production by partial oxidation of methanol over Au-Ag/ZnO-Fe2O3 catalyst
指導教授:張奉文
指導教授(外文):Feg-wen Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:104
中文關鍵詞:甲醇部分氧化雙金屬觸媒產氫
外文關鍵詞:partial oxidation of reactionproduce hydrogenbimetallic catalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以共沈澱法製備Au-Ag/ZnO-Fe2O3雙金屬觸媒,應用於甲醇部分氧化反應產製氫氣 (CH3OH+0.5O2→2H2+CO2, POM)。利用熱重分析儀 (TGA) 了解觸媒前趨物在煅燒過程中,擔體中的金屬鹽類和擔體本身的熱解特性,發現在540 K左右重量損失最大,是由hydrozincite (Zn5(CO3)2(OH)6) 遇熱分解為ZnO所造成的重量損失。由X-ray繞射儀 (XRD) 鑑定觸媒樣品的成分的晶相,發現煅燒前後皆無法看見金與銀的繞射波峰,僅觀察到擔體中hydrozincite形成結晶良好的ZnO。由程式升溫還原 (TPR) 結果可知,觸媒中的過渡金屬弱化了位於金屬原子附近的Fe-O鍵結力而有利於氧化鐵的還原。穿透式電子顯微鏡 (TEM) 觀察的結果顯示,煅燒程序對於金屬顆粒大小並無顯著影響,因此排除觸媒因為粒徑大小影響催化活性的可能。O2/CH3OH進料比例在0.3,相較於理論值0.5更有利於POM反應的進行,有較少的MD (CH3OH→2H2+CO) 反應發生,一氧化碳選擇率較低。反應溫度低時雖然一氧化碳選擇率低,但是反應以MC (CH3OH+1.5O2→CO2+2H2O) 反應為主,生成太多的水降低了氫氣選擇率。當溫度提升至523 K時,POM反應伴隨WGS (H2O+CO→CO2+H2) 反應發生,於是可得最低的一氧化碳選擇率。
Au-Ag/ZnO-Fe2O3 bimetallic catalysts prepared by co-precipitation method were studied to produce hydrogen from partial oxidation of methanol reaction (CH3OH+0.5O2→2H2+CO2, POM) for fuel cell application. TGA analysis was used to investigate the thermal decomposition of catalyst precursors. During calcination, the main weight loss of catalyst precursor was about 540 K. It was due to the hydrozincite (Zn5(CO3)2(OH)6) decomposed to ZnO. XRD results revealed that no diffraction peak of Au and Ag could be seen before and after calcination; only hydrozincite could be found in the patterns which transformed into the well crystalline ZnO structure. The TPR results showed that the transition-metal of catalyst weakened the Fe-O bond leading to the better reducibility of iron. TEM results revealed that calcination process did not have obvious influence on metal particle size. Thus, the effect of particle size to catalytic activity could be ignored. O2/CH3OH molar ratio of 0.3 exhibited better activity than the ratio of 0.5, theoretical value of POM reaction. Less MD (CH3OH→2H2+CO) reaction occurred resulted in lower CO selectivity. At lower reaction temperature, even it showed lower CO selectivity, the MC reaction predominated which lead to the decrease of H2 selectivity. When the reaction temperature increase to 523 K, POM reaction occurred with WGS (H2O+CO→CO2+H2) reaction, and had the lowest CO selectivity.
目錄 I
圖索引 IV
表索引 IX
第一章 緒論 1
1.1 前言 1
1.2 燃料電池之簡介 3
1.2.1 燃料電池簡介 3
1.2.2 發展優勢 5
1.2.3 燃料電池之工作原理 6
1.2.4 燃料電池種類 7
1.3 甲醇產製氫氣 10
1.4 研究內容與論文架構 11
第二章 文獻回顧 12
2.1 金與銀的性質 12
2.2 觸媒的製備方法 14
2.3 煅燒程序 16
2.4 擔體效應 18
2.5 活性位置 19
第三章 實驗方法與裝置 22
3.1 雙金屬觸媒的製備 22
3.2 雙金屬觸媒的鑑定分析 25
3.2.1 感應耦合電漿原子放射光譜儀 (ICP-AES) 25
3.2.2 熱重分析 (TGA) 27
3.2.3 X-ray繞射分析 (XRD) 29
3.2.4 程式升溫還原 (TPR) 32
3.2.5 穿透式電子顯微鏡 (TEM) 34
3.3 觸媒活性測試---甲醇部分氧化反應 36
3.4 實驗流程與操作變數 38
3.5 數據的計算與實例 40
3.5.1 轉化率的定義與計算 40
3.5.2 選擇率的定義與計算 43
3.6 藥品、氣體及儀器設備 47
3.6.1 藥品 47
3.6.2 氣體 47
3.6.3 儀器設備 48
第四章 結果與討論 50
4.1 物性分析 50
4.1.1 操作變數對金屬載量的影響 50
4.1.2 熱重分析 (TGA) 52
4.1.3 X-ray繞射分析 (XRD) 56
4.1.4 程式升溫還原分析 (TPR) 62
4.1.5 穿透式電子顯微鏡分析 (TEM) 67
4.2 化性分析 69
4.2.1 雙金屬觸媒對甲醇部分氧化反應的影響 70
4.2.2 擔體比例對觸媒活性的影響 72
4.2.3 共沈澱時pH值對觸媒活性的影響 76
4.2.4 煅燒溫度對觸媒活性的影響 80
4.2.5 進料比例對觸媒活性的影響 85
4.2.6 反應溫度對觸媒活性的影響 90
第五章 結論 96
參考文獻 99
Andreeva, D., Idakiev, V., Tabakova, T., Andreev, A., Giovanoli, R., “Low-temperature water-gas shift reaction on Au/α-Fe2O3 catalyst” Applied Catalysis A : General, 134 (1996) 275.

Agrell, J., Hasselbo, K., Jansson, K., Järås, S. G., Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique” Applied Catalysis A : General, 211 (2001) 239.

Agrell, J., Boutonnet, M., Melián-Cabrera, I., Fierro, J. L. G., “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterisation” Applied Catalysis A : General, 253 (2003) 201.

Agrell, J., Germani, G., Järås, S. G., Boutonnet, M., “Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique” Applied Catalysis A : General, 242 (2003) 233.

Bulushev, D. A., Paukshtis, E. A., Nogin, Y. N., Bal''zhinimaev, B., “Transient response and infrared studies of ethylene oxide reactions on silver catalysts and supports” Applied Catalysis A : General, 123 (1995) 301.

Bond, G. C., Thompson., D. T., “Catalysis by Gold” Catalysis Reviews - Science and Engineering, 41 (1999) 319.

Bond, G. C., Thompson, D. T., “Gold-catalysed oxidation of carbon monoxide” Gold Bulletin, 33 (2000) 41.

Cubeiro, M. L., Fierro, J. L. G., “Partial oxidation of methanol over supported palladium catalysts” Applied Catalysis A : General, 168 (1998) 307.

Chan, H. Y. H., Williams, C. T., Weaver, M. J., Takoudis, C. G., “Methanol oxidation on palladium compared to rhodium at ambient pressures as probed by surface-enhanced Raman and mass spectroscopies” Journal of Catalysis, 174 (1998) 191.

Chin, Y. H., Dagle, R., Hu, J., Dohnalkova, A. C., Wang, Y., “Steam reforming of methanol over highly active Pd/ZnO catalyst” Catalysis Today, 77 (2002) 79.

Carvalho, M. C. N. A., Passos, F. B., Schmal, M., “Study of the active phases of silver catalysts for ethylene epoxidation” Journal of Catalysis, 248 (2007) 124.

Dietz, W. A., “Response factors for gas chromatographic analyses” Journal of GC, 5 (1967) 68.

Dai, W. L., Cao, Y., Ren, L. P., Yang, X. L., Xu, J. H., Li, H. X., He, H. Y., Fan, K. N., “Ag-SiO2-Al2O3 composite as high active catalyst for the formation of formaldehyde from the partial oxidation of methanol” Journal of Catalysis, 228 (2004) 80.

Finch, R. M., Hodge, N. A., Hutchings, G. J., Meagher, A., Pankhurst, Q. A., Siddiqui, M. R. H., Wagner, F. E., Whyman, R., “Identification of active phase in Au-Fe catalysts for low-temperature CO oxidation” Chemistry Chemical Physics, 1 (1999) 485.

Fotopoulos, A. P., Triantafyllidis, K. S., “Ethylene epoxidation on Ag catalysts supported on non-porous, microporous and mesoporous silicates” Catalysis Today, 127 (2007) 148.

Haruta, M., Kobayashi, T., Sano, H., Yamada, N., “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 oC ”
Catalysis Letters, 16 (1987) 405.

Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide” Journal of Catalysis, 115 (1989) 301.

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4” Journal of Catalysis, 144 (1993) 175.

Hutchings, G. J., Siddiqui, M. R. H., Burrows, A., Kiely, C. J., Whyman, R., “High-activity Au/CuO-ZnO catalysts for the oxidation of carbon monoxide at ambient temperature” Journal of the Chemical Society, Faraday Transactions, 93 (1997) 187.

Hodge, N. A., Kiely, C. J., Whyman, R., Siddiqui, M. R. H., Hutchings, G. J., Pankhurst, Q. A., Wagner, F. E., Rajaram, R. R., Golunski, S. E., “Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation” Catalysis Today, 72 (2002) 133.

Hoffmann, J., Schauermann, S., Johánek, V., Hartmann, J., Libuda, J., “The kinetics of methanol oxidation on a supported Pd model catalyst : molecular beam and TR-IRAS experiments” Journal of Catalysis, 213 (2003) 176.

James, L., Andrew, D., In Fuel Cell Systems Explained 2nd; John Wiley
& Sons, Inc., 2003.

Kondarides , D. I. and Verykios, X. E., “Interaction of oxygen with supported Ag-Au alloy catalysts” Journal of Catalysis, 158 (1996) 363.

Kundakovic, Lj., Flytzani-Stephanopoulos, M., “Deep oxidation of methane over zirconia supported Ag catalysts” Applied Catalysis A : General, 183 (1999) 35.

Khoudiakov, M., Gupta, M.C., Deevi, S., “Au/Fe2O3 nanocatalysts for CO oxidation : A comparative study of deposition and coprecipitation techniques” Applied Catalysis A : General, 291 (2005) 151.

Li, J. L. and Inui, T., “Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures” Applied Catalysis A : General, 137 (1996) 105.

Munteanu, G., Ilieva, L., Andreeva, D., “Kinetic parameters obtained from TPR data for α–Fe2O3 and Au/α-Fe2O3 systems” Thermochimica Acta, 291 (1997) 171.

Minicő, S., Scire, S., Crisafulli, C., Maggiore, R., Galvagno, S., “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts” Applied Catalysis B : Environmental, 28 (2000) 245.

Milone, C., Crisafulli, C., Ingoglia, R., Schipilliti, L., Galvagno, S., “A comparative study on the selectivity hydrogen of α, β unsaturated aldehyde and keton to unsaturated alcohols on Au supported catalysts” Catalysis Today, 122 (2007) 341.

Neri, G., Visco, A. M., Galvagno, S., Donato, A., Panzalorto, M., “Au/iron oxide catalysts : temperature programmed reduction and X-ray diffraction characterization” Thermochimica Acta, 329 (1999) 39.

Okumura, M. T. and Haruta M., “Hydrogenation of 1,3-butadiene and of crotonaldehyde over higher dispersed Au catalysts” Catalysts Today, 74 (2002) 265.

Porta, P., Rossi, S. D., Ferraris, G., Jacono, M. L., Minelli, G., Moretti, G., “Structural characterization of malachite-like coprecipitated of binary CuO-ZnO catalysts” Journal of Catalysis, 109 (1998) 367.

Park, E. D., Lee, J. S., “Effect of pretreatment condition on oxidation over supported Au catalysts” Journal of Catalysis, 186 (1999) 1.

Parizotto, N. V., Rocha, K.O., Damyanova, S., Passos, F. B., Zanchet, D., Marques, C. M. P., Bueno, J. M. C., “Alumina-supported Ni catalysts modified with silver for the stream reforming of methane : Effect of Ag on the control of coke formation” Applied Catalysis A : General, 330 (2007) 12.

Scire, S., Minico, S., Crisafulli, C., Galvagno, S., “Catalytic combustion of violatile organic compounds over group IB metal catalysts on Fe2O3” Catalysts Communication, 2 (2001) 229.

Sakahara, S., Yajima, K., Belosludov, R., Takami, S., Kubo, M., Miyamoto, A., “Combinatorial computional chemistry approach to the desigh of methanol synthesis catalyst” Applied Surface Science, 189 (2002) 253.

Sayari, S. A., Carley, A. F., Taylor, S. H., Hutchings, G. J., “Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature : comments on the effect of synthesis conditions on the preparation of high catalysts prepared by coprecipitation ” Topics in Catalysis, 44 (2007) 123.

Tsybulya, S. V., Kryukova, G. N., Goncharova, S. N., Shmakov, A. N., Balzhinimaev, B. S., “Study of the real structure of silver supported catalysts of different dispersity ” Journal of Catalysis, 154 (1995) 194.

Tabakova, T., Idakiev, V., Andreeva, D., Mitov, I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction” Applied Catalysis A : General, 202 (2000) 91.

Traxel, B. E., Hohn, K. L., “Partial oxidation of methanol at millisecond contact times” Applied Catalysis A : General, 244 (2003) 129.

Visco, A. M., Neri, F., Neri, G., Donato, A., Milon, C., Galvagno, S.,“X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts” Physical Chemistry Chemical Physics, 1 (1999) 2869.

Venugopal, A., Skurrell, M. S., “Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water-gas shift reaction”, Applied Catalysis A : General, 258 (2004) 241.

Wang, G. Y., Zhang, W. X., Lian, H. L., Jiang, D. Z., Wu, T. H., “Effect of calcination temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances” Applied Catalysis A : General, 239 (2003) 1.

Wang, D., Hao, Z., Cheng, D., Shi, X., Hu, C., “Influence of pretreatment condition on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts”Journal of Molecular Catalysis A : Chemical, 200 (2003) 229.

Waterhouse, G. I. N., Bowmaker, G. A., Metson, J. B., “Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst” Applied Catalysis A : General, 265 (2004) 85.

Wang, A. Q., Liu, J. H., Lin, T. S., Mou, C. Y., “A novel efficient Au-Ag alloy catalyst system : preparation, activity, and characterization” Journal of Catalysis, 233 (2005) 186.

Wang, A., Hsieh, Y. P., Chen, Y. F., Mou, C.Y., “Au-Ag alloy nanoparticle as catalyst for CO oxidation : effect of Si/Al ratio of mesoporous support” Journal of Catalysis, 237 (2006) 197.

Zhou, G., Deng, J., “Preparation and photocatalytic performance of Ag/ZnO nano-composites” Materials Science in Semiconductor Processing, 10 (2007) 90.

衣寶廉,“燃料電池---原理與應用”,五南圖書出版股份有限公司,2005年3月。

吳榮宗,“工業觸媒概論”增訂版,興國出版社,(1980)。

許寧逸,顏溪成,“由碳能朝向氫能的燃料電池”,科學發展2003年7月,367期。

陳振源,“未來的綠色能源---燃料電池”,科學發展2005年7月,391期。

楊志忠、林頌恩、偉文誠,“燃料電池的發展現況”,科學發展2003年7月,367期。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top