|
PFC: [1] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 1: Historical overview of climate change science. Intergovernmental Panel on Climate Change, Page 97, 2007. [2] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for Policymakers. Intergovernmental Panel on Climate Change, Page 6, 2007. [3] IPCC, Intergovernmental Panel on Climate Change Third Assessment Report. Chapter 6: Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change, Page 353,2001. [4] IPCC, Intergovernmental Panel on Climate Change Third Assessment Report. Chapter 6: Radiative Forcing of Climate Change. Intergovernmental Panel on Climate Change ,Page 385, 2001. [5] National Oceanic and Atmospheric Administration (NOAA), http://www.esrl.noaa.gov/gmd/ccgg/iadv/ [6] IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 2 Changes in Atmospheric Constituents and in Radiative Forcing. Intergovernmental Panel on Climate Change, Page 131, 2007. [7] Colin, B.; Michael, C. Environmental Chemistry 3th. Page 32 [8] Advanced Global Atmospheric Gases Experiment (AGAGE), http://agage.eas.gatech.edu/data.htm [9] Harnisch, J.; Borchers, R.; Fabian, P.; Gaggeler, H.W.; Schotterer, U. Effect of natural tetrafluoromethane. Nature 1996, 384, 32. [10] Khalil, K.; Aslam, M.; Rasmussen, R.A.; Culbertson, J.A.; Prins, J. M.; Grimsrud, E.P.; Shearer, M.J. Atmospheric perfluorocarbons. Environ. Sci. Technol. 2003, 37, 4358-4361. [11] Worton, D.R.; Sturges, W.T.; Gohar, L.K.; Shine, K.P.; Martinerie, P.; Oram, D.E.; Humphrey, S.P.; Begley, P.; Gunn, L.; Barnola, J.M.; Schwander, J.; Mulvaney, R. Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air. Environ. Sci. Technol. 2007, 41, 2184-2189. [12] IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. PFC emissions from primary aluminium production. Page 200 [13] International Aluminium Institute(IAI), International Aluminium Industry''s Perfluorocarbon Gas Emissions Reduction Programme, Result of the 2005 Anode Effect Survey, 2007. [14]International Magnesium Association''s, Primary Magnesium Production 2006. [15]US EPA, the International Magnesium Association (IMA), China Magnesium Association (CMA), and Japan Magnesium Association (JMA), The Alternatives to SF6 for Magnesium Melt Protection, 2006. [16]US EPA, http://www.epa.gov/magnesium-sf6/accomplishments.html [17] 李灝銘, 全氟化物溫室效應氣體減量技術評析, 2006. [18] Washington, D.C.; London, U.K.; Protocol for Measurement of tetrafluoromethane(CF4) and Hexafluoroethane(C2F6) Emission from Primary Aluminum Production, 2003 [19] Zazzera, L.; Reagen, W.; Cheng, A.; Infrared study of process emissions during C3F8/O2 plasma cleaning of plasma enhanced chemical vapor deposition chambers. J. frlectrocflem. Soc. 1997, 144, 3597~3601. [20] Wofford, B.A.; Jackson, M.W.; Hartz, C.; Bevan, J.W. Surface wave plasma abatement of CHF3 and CF4 containing semiconductor process emissions. Environ. Sci. Technol. 1999, 33(11), 1892-1897. [21] Clemons, C.A.; Altshuller, A.P. Responses of electron-capture detector to halogenated substances. Anal. Chem. 1966, 38(1), 133-136. [22]National Oceanic and Atmospheric Administration (NOAA), http://www.esrl.noaa.gov/gmd/hats/insitu/insitu.html [23] Bright, R.N.; Matula, R.A. Gas chromatographic separation of low molecular weight fluorocarbons. J. Chromatogr. 1968, 35, 217~222. [24] Rogers, R.; Born, G.; Kessler, W.; Christian, J. Pyrolysis-gas chromatography of perfluoro-n-pentane. Anal. Chem. 1973, 45(3), 567-570. [25] Andrawes, F.F.; Gibson, E.K.; Bafus, D.A.; Analysis of low molecular weight perfluoroalkanes by gas chromatography with helium ionization detection. Anal. Chem. 1980, 52(8), 1377-1379. [26] Harnisch, J.; Borchers, R.; Fabian, P.; Maiss, M. Tropospheric trends for CF4 and C2F6 since 1982 derived from SF6 dated stratospheric air. Geophys. Res. Lett. 1996, 23, 1099-1102. [27] Wang, J.L.; Kuo, S.R.; Ma, S.S.; Chen, T.T. Construction of a low-cost automated chromatographic system for measurement of ambient methane Anal. Chem. Acta., 2001,448, 187-193.
CO: [1] Smith, K.R. Biofuels, air pollution, and health: a global review. Kluwer Academic Pub, 1987. [2] U.S. Environmental Protection Agency , http://www.epa.gov/air/urbanair/6poll.html [3] NOAA/ESRL/GMD, http://www.esrl.noaa.gov/gmd/ccgg/ [4] Fishman, J.; Seiler, W. Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget. J. Geophys. Res. 1983, 88, 3662-3670. [5] Cicerone, R.J. How has the Atmospheric Concentration of CO changed? The Changing Atmosphere, edited by F.S. Rowland and I.S.A. Isaksen, 49-61, 1988. [6] Seinfeld, J.H., Atmospheric chemistry and physics of air pollution, 1986. [7] http://web.eos.ucar.edu/mopitt/ [8] Edwards, D.P.; Pe´tron, G.; Novelli, P.C.; Emmons, L.K.; Gille, J.C.; Drummond, J.R. Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of Pollution in the Troposphere (MOPITT). J. Geophys. Res. 2006, 111, 1~9. [9] Levy, H. Normal atmosphere: Large radical and formaldehyde predicted, Science 1971, 173, 141-143. [10] Logan, J.A.; Prather, M.J.; Wofsy, S.C.; McElroy, M.B. Tropospheric chemistry: A global perspective. J. Geophys. Res. 1981, 86, 7210-7254. [11] Thompson, A.M. The oxidizing capacity of the earth’s atmosphere: Probable past and future changes. Science 1992, 256, 1157-1165. [12] Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185-1190. [13] Sachse, G.W.; Hill, G.F. Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique. J. Geophys. Res. 1987, 92, 2071-2081. [14] NIEA, 空氣中一氧化碳自動檢驗方法, 環署檢字第43007 號公告, 1992. [15] Smith, R.N.; Swinehart, J.; Lesnini, D.G. Chromatographic analysis of gas mixtures containing nitrogen, nitrous oxide, nitric oxide, carbon monoxide, and carbon dioxide. Anal. Chem. 1958, 30, 1217-1218. [16] Porter, K.; Volman, D.H. Flame ionization detection of carbon monoxide for gas chromatographic analysis. Anal. Chem. 1962, 34, 748-749. [17] McCullough, J.D.; Crane, R.A.; Beckman, A.O. Detection of carbon monoxide in air by use of red mercuric oxide. Anal. Chem. 1947, 19, 999-1002. [18] Novelli, P.C. An internally consistent set of globally distributed atmospheric carbon monoxide mixing ratios developed using results from an intercomparison of measurements. J. Geophys. Res., 1998, 103, 19285-19293. [19] Volz, A.; Kley, D. A resonance-fluorescence instrument for the In-situ measurement of atmospheric carbon monoxide. Journal of Atmospheric Chemistry 1985, 2, 345~357. [20] Gerbig, C.; Kley, D.; Volz-Thomas, A.; Kent, J.; Dewery, K.; McKenna, D.S. Fast response resonance fluorescence CO measurements aboard the C-130: instrument characterization and measurement made during North Atlantic Regional Experiment 1993. J. Geophys. Res. 1996, 101, 29229~29238. [21] Gerbig, C.; Schmitgen, S.; Kley, D.; Volz-Thomas, A.; Dewey, K.; Haaks, D. An improved fast-response vacuum-UV resonance fluorescence CO instrument, J. Geophys. Res. 1999, 104, 1699~1704. [22] Takegawa, N.; Kita, K.; Kondo, Y.; Matsumi, Y.; Parrish, D.D.; Holloway, J.S.; Koike, M.; Miyazaki, Y.; Toriyama, N.; Kawakami, S.; Ogawa, T. Airborne vacuum ultraviolet resonance fluorescence instrument for in situ measurement of CO. J. Geophys. Res. 2001, 106, 24237~24244.
|