|
參考文獻 [1]Issa, J.P.,“CpG-island methylation in aging and cancer”, Curr. Top. Microbiol. Immunol., Vol 249, pp.101-118, 2000. [2]Wilson G.G. and N.E. Murray, “Restriction and modification systems”, Annu. Rev. Genet., Vol 25 , pp. 585–627, 1991. [3]Hermann A., R. Goyal, and A. Jeltsch, “The Dnmt1 DNA-(cytosine-C5) – methyltransferase methylates DNA processively with high preference for hemimethylated target sites.” , J. Bio. Chem., Vol 279 , pp.48350-48359, 2004. [4]Delaval K. and Robert F.,“Epigenetic regulation of mammalian genomic imprinting”, Current Opinion in Genetics & Development ,Vol.14, pp.188-195,2004 [5]Lei, H. et al. “De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. ”, Development , Vol 122, pp. 3195-3205, 1996. [6]Okano, M., D.W. Bell, D.A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.’’ ,Cell, Vol 99, pp.247-257, 1999. [7]Jaenisch R. and A. Bird.,“Epigenetic regulation of gene expression : how the genome integrates intrinsic and environmental singals”,Nature, Vol. 33, pp.245 -254, 2003. [8]Jones PL, et al. “Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.”, Nat. Genet., Vol 19, pp.187-191, 1998. [9]Nan X, et al.“Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex .”, Nature ,Vol. 393 , pp.386-389 , 1998. [10]Marisa S. Bartolomei and Shirley M. Tilghman,“Genomic imprinting in mammals”, Annu. Rev. Genet., Vol. 31,pp.493-525,1997. [11]Simon, I. et al.“Asynchronous replication of imprinted genes is established in the gametes and maintained during development.”Nature ,Vol. 401, pp.929–932, 1999. [12]Reik W., and W. Jorn,“Genomic imprinting : parental influence on the genome”, Nature, Vol 2,pp.21-32,2001. [13]Hendrich B ,and Bird A., ‘‘Identification and characterization of a family of mammalian methyl-CpG binding proteins”, Mol Cell Biol., Vol. 18 , pp.6538- 6547,1998. [14]Zhang Y., Ng H.H., and H. Erdjument-Bromage, et. al., “Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation ”, Gene Dev.,Vol. 13,No.15, pp.1924-1935, 1999. [15]Kitsberg D., et. al.,“Allele-specific replication timing of imprinted gene regions” Nature, Vol.364, pp.459–63, 1993. [16]Klose RJ., and AP. Bird,“Genomic DNA methylation: the mark and its mediators.”, Trends Biochem. Sci., Vol. 31, No.2,pp.89-97, 2006 . [17]DeChiara TM, Robertson EJ, and Efstratiadis A., “Parental imprinting of the mouse insulin-like growth factor II gene” Cell, Vol. 64, pp.849–59,1991. [18]Lerchner W,and Barlow DP.“Paternal repression of the imprinted mouse Igf2r locus occurs during implantation and is stable in all tissues of the post-implantation mouse embryo”, Mech Dev., Vol. 61, pp.141-9, 1997. [19]Ekstrom TJ. et. al.,“Promoter-specific IGF2 imprinting status and its plasticity during human liver development”, Development, Vol.121, pp.309–316,1995. [20]Pfeifer K. ,and Tilghman SM.,“Allelespecific gene expression in mammals: the curious case of the imprinted RNAs.”Genes Dev. ,Vol. 8, pp.1867–1874,1994. [21]Okano, M., Bell, D.W., Haber, D.A., and Li, E. “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.”,Cell, Vol.99, pp.247–257.1999. [22]Bird A.,“DNA methyaltion patterns and epigenetic memory”,Genes and Dev.,Vol. 16, pp.6-21,2002. [23]Rhee, I., Jair, K.W., Yen, R.W., Lengauer, C., Herman, J.G., Kinzler, K.W., Vogelstein, B., Baylin, S.B., and Schuebel, K.E. ,“CpG methylation is maintained in human cancer cells lacking DNMT1.”,Nature, Vol. 404 ,pp.1003–1007.2000. [24]Horike, S. et al.“Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith–Wiedemann syndrome”, Hum. Mol. Genet., Vol. 9, pp.2075–2083, 2000. [25]Reik, W. et al.“Epigenetic reprogramming in mammalian development.”, Science, Vol. 293, pp.1089–1093 ,2001. [26]Constancia, M. et al.,“Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19”, Nature Genet. Vol. 26, pp.203–206, 2000. [27]Schoenherr CJ., Levorse JM., and Tilghman SM.,“CTCF maintains differential methylation at the Igf2/H19 locus”, Nat Genet, Vol.33, pp.66-69. 2003. [28]Huyen, Y. et al. ,“Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks.”, Nature, Vol. 432, pp. 406–411,2004. [29]Maurer-Stroh, S. et al.,“The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains.”,Trends Biochem. Sci. ,Vol. 28, pp. 69 –74 ,2003. [30]Di Croce, L. et al.,“Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.”, Science, Vol. 295, pp.1079–1082 ,2002. [31]Delaval K, Feil R., “Epigenetic regulation of mammalian genomic imprinting.”, Curr Opin Genet Dev., Vol.14, No.2, pp.188-195, 2004. [32]Clemson CM. et. al.,“XISTRNApaints the inactiveXchromosome at interphase: evidence for a novel RNA involved in nuclear/ chromosome structure.” J. Cell Biol., Vol. 132, pp.259–75, 1996. [33]Gartler S.M. ,and M.A. Goldman, “X-Chromosome Inactivation”, Encyclopedia of Life Sciences, pp.3-6,2006. [34]Peedicayil J. ,“The role of epigenetics in mental disorders.”, Indian J Med Res. ,Vol. 126, pp.105-111, 2007 . [35]Kanellopoulou C. et al. ,“Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing.”Genes Dev., Vol. 19, pp.489–501,(2005) [36]Andreu N. et. al.,“Wiskott-Aldrich syndrome in a feamale with skewed X-chromosome inactivation”, Blood Cell Mol Dis., Vol. 31,No.3,pp.332-337,2003. [37]Fraga MF, Ballestar E, and Paz MF et al.“Epigenetic differences arise during the lifetime of monozygotic twins”, Proc Natl Acad Sci USA., Vol. 102, 10604–10609, 2005. [38]Stuffrein-Roberts S, Joyce PR, and Kennedy MA.,“Role of epigenetics in mental disorders.” , Aust N Z J Psychiatry., Vol.42, No. 2, pp.97-107. 2008. [39]Jeddeloh, J.A., Stokes, T.L., and Richards, E.J..,“Maintenance of genomic methylation requires a SW12/SNF2-like protein.” Nat. Genet., Vol. 22, pp. 94–97,1999. [40]Petronis A., et. al., “Monozygotic twins exhibit numerous epigenetic differences: Clues to twin discordance?”, SchizophrBull, Vol. 29, pp.169-178, 2003. [41]Aston C, Jiang L, and Sokolov BP., “Microarray analysis of postmortem temporal cortex from patients with schizophrenia.”, J Neurosci Res. ,Vol. 77 ,pp. 858-866, 2004. [42]Yates T.D.,“Structures of SET domain proteins: protein lysine methyltransferase make their mark”, Cell, Vol. 111,pp.5-7,2002. [43]West RL, Lee JM, and Maroun LE. “Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient”, J Mol Neurosci, Vol.6 , pp.141-146, 1995. [44]Zegerman P. et. al., “Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex.”, J Biol Chem., Vol. 277,pp.11621–11624,2002. [45]Schumacher A, et. al.,“Microarray-based DNA methylation profiling: technology and applications”, Nucleic Acids Res., Vol. 34, pp. 528-542, 2006. [46]Gottesman, I.I.,and Shields, J. , “Schizophrenia: The Epigenetic Puzzle”, Cambridge University Press, Cambridge, p275,1982. [47]Schultz SH,Steven M.D.,and Cleveland G.S.,“Schizophrenia: a review.”, Am Fam Physician., Vol. 75,No. 12,pp. 1821-1829, 2007. [48]Ng HH, and Bird A.“DNA methylation and chromatin modification.”, Curr Opin Genet Dev., Vol. 9, pp:158-63, 1999. [49]Tamaru, H. and Selker, E.U.,“A histone H3 methyltransferase controls DNA methylation in Neurospora crassa.”, Nature, Vol 414, pp.227-283, 2001. [50]Jackson, J.P. et. al., “Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase.”, Nature, Vol. 416 , pp.556-560, 2002. [51]Bird A.P.,and Wolffe A.P.,“Methylation-induced repression — belts,braces, and chromatin.”, Cell, Vol. 99, pp.451-454, 1999. [52]Antonova, E., Sharma, T., Morris, R., and Kumari, V. ,“The relationship between brain structure and neurocognition in schizophrenia: a selective review”, Schizophr. Res., Vol. 70, pp.117–145, 2004. [53]Freitag M.,and Selker E.U.,“ Controlling DNA methylation: many roads to one modification.”, Curr. Opin. Genet Dev., Vol. 15, pp.191-199, 2005. [54]Lehnertz B.,et. al.,“Suv39hmediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin.”, Curr. Biol., Vol. 13, pp.1192-1200, 2003. [55]Fuks F., Hurd P.J., Deplus R., Kouzarides T.,“The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase.”, Nucleic Acids Res., Vol. 31,pp.2305-2312, 2003. [56]Rea S., et. al.,“Regulation of chromatin structure by site-specific histone H3 methyltransferases.”, Nature, Vol. 406, pp.593-599, 2000. [57]Lewis A, et. al.,“Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation.”, Nat. Genet., Vol. 36, pp.1291-1295, 2004. [58]Singal R.,and Ginder G.D.”DNA methylation”, Blood , Vol. 12, pp.4059-4070,1999. [59]Boyes J. ,and Bird A.,“DNA methylation inhibits transcription indirectlyvia a methyl-CpG binding protein.”, Cell , Vol. 64, p.1123, 1991. [60]Boyes J. ,and Bird A.,“Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein.”, EMBO J. , Vol. 11, p.327, 1992. [61]Goldman-Rakic, P.S., “The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia.”, Biol. Psychiatry, Vol. 46, pp.650–661, 1999. [62]Nan X., Campoy F.J. ,and Bird A.,“MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.”, Cell, Vol. 88, p.471, 1997. [63]Kass SU., Landsberger N. ,and Wolffe A.P.,“DNA methylation directs a time-dependent repression of transcription initiation.”, Curr Biol .,Vol. 7,p.157,1997. [64]Garrick D., et al.,“Repeat-induced gene silencing in mammals”, Nature Genetics, Vol. 18, pp 56-59,1998. [65]Wade PA.,“Methyl CpG-binding proteins and transcriptional repression.” , Bioessays , Vol.23,No.12,pp.1131-7,2001. [66]Fuks F., “DNA methylation and histone modifications: teaming up to silence genes ”, Curr Opin Genet Dev., Vol. 15, No.5, pp:490-5, 2005. [67]Geiman TM, and Robertson KD.,“Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together?”, J Cell Biochem., Vol. 87,No.2,pp:117-25. [68]林潔、來茂德,「DNA甲基化、組蛋白去乙醯化與基因表達抑制」,臨床與實驗病理學雜誌,22(3),353-356頁,2006。 [69]Detich N, Theberge J, and Szyf M.“Promoter-specific activation and demethylation by MBD2/demethylase.”, J Biol Chem. ,Vol.39 ,pp:35791-3584 ,2002. [70]田筱青、房靜遠,「組蛋白甲基化研究進展」,生物化學與生物物理進展,33(6),511-516頁,2006。 [71]Rose C.A., et al.,“Neurobiology of schizophernia”, neuron,Vol.52, pp.139-153, 2006. [72]Wassink TH, Nopoulos P, Pietila J, Crowe RR, Andreasen NC. “NOTCH4 and the frontal lobe in schizophrenia”, Am J Med Genet B Neuropsychiatr Genet., Vol. 118, pp.1–7, 2003. [73]Iritani S.,“Neuropathology of schizophrenia: A mini review”, Neuropathology, Vol. 27, pp.604-608, 2007. [74]張積家,陸愛桃,「精神分裂症患者的腦結構及其認知功能損害」,中國臨床心理學雜誌,第十三卷,第四期,495頁,2005年。 [75]Turner, J.A.,et al., “Imaging phenotypes and genotypes in schizophrenia.”, Neuroinformatics, Vol.4, pp:21-49,2006. [76]Kato C. et al., “Molecular genetic studies of schizophrenia: challenges and insights.” , Neurosci Res., Vol. 43, No.4, pp:295-304, 2002. [77]Arnold, S.E., Talbot, K., and Hahn, C.G., “Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog.”, Brain Res., Vol. 147, pp.319–345, 2005. [78]Parasad S. et al,“Molecular genetics of schizophrenia:past, present and future”, J. Biosci., Vol. 27, No. 1, 2002. [79]Seeman P, Kapur S.,“Schizophrenia: more dopamine, more D2 receptors”, Proc Natl, Acad Sci USA, Vol. 97, pp.7673-7675, 2000. [80]Collier DA, Li T., “The genetics of schizophrenia: glutamate not dopamine?”, Eur J Pharmacol. ,Vol. 480, pp.177-184, 2003. [81]Undine E.,“Molecular mechanism of Schizophrenia”, Cell Physiol Biochem, Vol.20, pp.687-702,2007. [82]Meisenzahl E.M., et. al., “The role of dopamine for the pathophysiology of schizophrenia”, International Review of Psychiatry, Vol.19, No.4, pp.337–345, 2007. [83]Vandenberg D J., et. al.,“Human dopamine transporter gene (DAT1) maps to chromosome 5p15?3 and displays a VNTR”, Genomics, Vol. 14, pp.1104–1106, 1992. [84]Arora R. C. and Meltzer H. Y., “Serotonin2 (5HT2) receptor binding in the frontal cortex of schizophrenic patients”,J. Neural. Trans., Vol. 85, pp.19–29, 1991. [85]Joyce J N., et. al., “Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics”, Neuropsychopharmacology, Vol. 8, pp.315–336, 1993. [86]Johnson JW ,and Ascher P.,“Glycine potentiates the NMDA response in cultured mouse brain neurons.”, Nature, Vol.325, pp.529-31, 1987. [87]Takai H., et al.,“NMDA-induced apoptosis in the developing rat brain”, Exp Toxicol Pathol., Vol. 55 ,pp.33-37, 2003. [88]Lang U.E. et al., “Molecular mechanisms of schizophrenia.”, Cell Physiol Biochem., Vol. 20, No. 6, pp.687-702, 2007. [89]Petronis A, Paterson A.D. and Kennedy JL. , “Schizophrenia:An Epigenetic Puzzle”, Schizophr. Bull., Vol. 25, pp. 639–655, 1999. [90]Franklin G.C., Adam G.I., and Ohlsson R., “Genomic imprinting and mammalian development”, Placenta, Vol.17, pp.3-14, 1996. [91]Battle Y L, et. al., “Seasonality and infectious disease in schizophrenia: the birth hypothesis revisited”, J. Psychiatr. Res., Vol. 33, pp.501–509, 1999. [92]O’Reilly R.L. and Singh SM.,“Retroviruses and schizophrenia revisited”, Am. J. Med. Genet.,Vol. 67 pp.19–24, 1996. [93]Petronis A.,“The genes for major psychosis: aberrant sequence or regulation?”, Neuropsychopharmacology, Vol.23, No.1, pp.1-12, 2000. [94]Bunzel R, et al.,“Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain.” , Brain Res Mol Brain Res, Vol. 59, pp.90–92, 1998. [95]Flight M.H.,“Epigenetics:Methylation and schizophrenia”, Nature Reviews Neuroscience , Vol. 8, pp.910-911, 2007. [96]Dugs J.C. et al.,“Functional Genomic Analysis of Oligodendrocyte Differentiation”, The Journal of Neuroscience , Vol. 26, pp.10967-10983, 2006. [97]Adrian Bird, ‘‘Introduction perceptions of epigenetics’’, Nature, Vol. 447, pp. 396-398, 2007. [98]Sharma R.P.,“Schizophrenia, epigenetics and ligand-activated nuclear receptors:a framework for chromatin therapeutics”, Schizophr Res., Vol. 72, pp. 79-90. [99]Schafer J. and Korbinian S.,“An empirical Bayes appraoch to inferring large-scale gene association networks”, Systems biology, Vol. 21, no.6, pp.754-764, 2004. [100]Alexa A.,Jorg R., and Thomas L.,“Imrpoved scoring of functional groups from gene expression data by decorrelating GO graph structure”, Bioinformatics, Vol. 22, no. 13,pp.1600-1607,2006. [101]Newman M. E. J., “Modularity and community structure in networks”, PNAS., Vol. 103, pp.8577-8582, 2006. [102]Kimberly D. et al.,“DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons”, PLoS ONE, Vol. 19, pp.e895, 2007. [103]Connor C.M. and S. Akbarian, “DNA methylation changes in schizophrenia and bipolar disorder.”, Epigenetics , Vol. 3, pp.55-58, 2008. [104]Mill J. et al.,“Epigenomic profiling reveals DNA-methylation changes associated with major psychosis”, Am J Hum Genet, Vol. 82, pp.696-711, 2008. [105]Pastor-Satorras, et al., “Dynamical and Correlation Properties of the Internet”, Phys. Rev. Lett., Vol. 87, 2001.
|