跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐紹祖
研究生(外文):Shao-tzu Tang
論文名稱:DNAAptamer掌性異構物辨識之熱力學與機制探討
論文名稱(外文):Thermodynamic Basis of Chiral Recognition in a DNA Aptamer
指導教授:陳文逸陳文逸引用關係
指導教授(外文):Wen-Yih Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生物資訊與系統生物研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:93
中文關鍵詞:熱力學掌性異構物核酸適體恆溫滴定微卡計
外文關鍵詞:ITCthermodynamicsChiral recognitionAptamer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
核酸適體(Aptamer)為對目標分具特異性及強親合性的寡聚核苷酸(Oligonucleotides),因此可以被用來作為掌性異構物分離用的選擇劑,但對核酸適體對掌性異構的辨識(Chiral recognition)之機制探討並不多,故本研究選擇L-Argininamide(L-Arm)對應的DNA核酸適體(DNA aptamer),對L-Argininamide(L-Arm)及其鏡相異構物D-Argininamide (D-Arm)的掌性辨識為研究之目標。本實驗設計不同的實驗條件,包含不同鹽濃度、金屬離子種類(K+、Na+)、溫度、反應溶液pH值及緩衝液種類等,利用恆溫滴定微卡計(ITC)與圓二色光譜儀(CD),期望藉由熱力學(ITC)與二級結構(CD)分析,來獲得核酸適體掌性辨識性機制之相關資訊。
經由熱力學分析得知,L-Arm的核酸適體分別與L-Arm和D-Arm結合反應均為是Enthalpy driven及Entropy cost的程序,且結合過程中均伴隨著較鬆散的Apt構形的有序化(Conformational ordering)。在結合作用力的探討上,反應過程中均包含:(1)L-Arm和D-Arm帶正電的胺基 (NH3+)和核酸間的靜電作用力造成核酸Counterion的釋放;(2)去質子化耦合效應以及(3)氫鍵等。不同金屬離子(K+、Na+)對於Apt與L-Arm及D-Arm和Apt的結合行為之影響均無明顯差異,當提高鹽濃度,均造成結合常數下降。比較L-Arm與Apt的結合反應和D-Arm與Apt的結合反應,由反應熱容量變化(?Cp)差異得到L-Arm和Apt結合所造成Apt構形的轉變(非極性表面的包埋)會完全相異於D-Arm結合所造成構形的轉變(極性表面的包埋);而L-Arm與D-Arm鄰近掌中心位置質子化的Amino group和Apt間靜電作用力的不同是造成Apt對L,D-Arm具掌性辨識的主因之一。

本研究利用ITC所得之結合常數(KA)、熱力學參數(ΔH、ΔS),配合CD所得之構形變化,說明核酸適體掌性辨識之作用力、熱力學以及結構等相關資訊,此研究結果可提供以核酸適體作為掌性選擇劑設計及鏡相異構物分離應用之理論基礎。
Chiral separations have become an area of increasing interest in pharmaceutical or biological fields, since most of biological molecules, many drugs and food additives are chiral compounds. Their physiological behaviors are related their chirality. DNA Aptamers (oligonucleotides) are a new group of chiral selectors and they can bind with a wide rang of target molecules with high affinity and specificity. As a new group of chiral selectors, there still exists a deficiency in the understanding of the molecular basis of chiral recognition in a DNA aptamer. Herein a comparative study of the L-argininamide-binding DNA aptamer complexation with L-Argininamide (L-Arm) and its enantiomer is investigated by spectroscopic and calorimetric methods. The influence of various experimental conditions (such as temperature, pH and salt concentration) on the L-Arm and D-Arm binding properties was studied in order to provide information about the chiral recognition mechanism of the DNA aptamer.

Isothermal titration calorimetry studies revealed that both L-Arm and D-Arm binding with the aptamer are an enthalpy driven and entropy cost process. Ionic strength experiments, along with pH experiments, indicate the protonated amino group of argininamide (both of enantiomers) participates in electrostatic interaction and a stronger electrostatic interaction of D-Arm binding with the aptamer than L-Arm binding with the aptamer. Both the larger change in ellipticity and more entropy cost suggest the larger conformational change of the aptamer upon the D-Arm binding than L-Arm binding. The stronger electrostatic interaction and the larger conformational change of the aptamer upon D-Arm binding also cause a contrary direction of the heat capacity change (?Cp) of L-Arm binding. This work indicates that the electrostatic interaction provided by protonated amino group with the aptamer and the conformational change of the nucleic acid upon the binding reactions are the sources of chiral recognition in the DNA aptamer.
中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1鏡相異構物的介紹 3
2.1.1 鏡相異構物簡介 3
2.1.2 鏡相異構物不同的生化效應 5
2.1.3 鏡相異構的分離 7
2.1.4 掌性辨識理論之探討 12
2.1.5 D型胜肽(D-Peptide)及L型核酸(L-Nucleic acid) 14
2.2適體(Aptamers)介紹 16
2.2.1核酸適體及其篩選 16
2.2.2胜肽適體、核酸開關及核酸酶 19
2.2.3核酸適體相關應用 21
2.3核酸適合體與配體結合行為之探討 26
2.3.1 結合熱容量變化(ΔCp)分析之研究 26
2.3.2 L-Arginine及L-Argnininamide和核酸適體的交互作用 29
2.4 恆溫滴定微卡計及圓二色光譜儀 31
2.4.1恆溫滴定微卡計之簡介 31
2.4.2結合常數與速率常數分析 34
2.4.3圓二色光譜及在蛋白質、核酸結構分析上的應用 36
第三章 實驗藥品與儀器設備 40
3.1 實驗藥品 40
3.2 儀器設備 41
3.3 實驗步驟 42
3.3.1 恆溫滴定微卡計實驗(MicroCal VP-ITC) 42
3.4 ITC實驗參數設定與數據分析 45
3.4.1 VP-ITC實驗參數設定 45
第四章結果與討論 47
4.1結合反應對核酸適體構形影響差異的分析 47
4.2探討結合反應熱力學的異同 53
4.3 L-Arm與D-Arm分別和Apt結合機制之探討 60
4.3.1結合反應之熱容量變化分析 60
4.3.2鹽類效應與金屬離子效應 67
4.3.3 溶液pH值影響與質子化耦合效應 79
第五章 結論 85
第六章 參考文獻 88
1. Brumbt, A.; Ravelet, C.; Grosset, C.; Ravel, A.; Villet, A. and Peyrin, E. “Chiral Stationary Phase Based on a Biostable L-RNA Aptamer.” Analytical Chemistry 2005, 77, 1993-1998.
2. Ravelet, C.; Boulkedid, R.; Ravel, A.; Grosset, C.; Villet, A.; Fize, J. and Peyrin, E. “A l-RNA aptamer chiral stationary phase for the resolution of target and related compounds.” Journal of Chromatography A 2005, 1076, 62-70.
3. Ruta, J.; Ravelet, C.; Grosset, C.; Fize, J.; Ravel,A.; Villet, A. and Peyrin, E. “Enantiomeric separation using an L-RNA aptamer as chiral additive in partial-filling capillary electrophoresis.” Analytical chemistry 2006, 78, 3032-3039.
4. Michaud, M.; Jourdan, E.; Villet, A.; Ravel A.; Grosset, C. and Peyrin, E. “A DNA aptamer as a new target-specific chiral selector for HPLC.” Journal of the American Chemical Society. 2003, 125, 8672-8679.
5. Michaud, M.; Jourdan, E.; Ravelet, C.; Villet, A.; Ravel, A.; Grosset, C. and Peyrin, E. “Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers.” Analytical Chemistry 2004, 76, 1015-1020.
6. 鄧名志 “環糊精及膠體穩定度對整體毛細管柱製備之研究” 碩士論文,國立成功大學化學所 2003.
7. Palencia, G.; Calderon, A. and Sotelo, J. “Thalidomide inhibits pentylenetetrazole-induced seizures.” Journal of the Neurological Sciences 2007, 258, 128-131.
8. Price, W. A. and Giannin, A. J. I. “Neurotoxicity caused by lithium-verapamil synergism.” The Journal of Clinical Pharmacology 1986 26, 717-719.
9. Koppenhoefer, B.; Nothdurft, A.; Pierrot-Sanders, J.; Piras P.; Popescu, C. and Roussel, C. “CHIRBASE, a graphical molecular database on the separation of enantiomers by liquid-, supercritical fluid-, and gas chromatography.” Chirality 1993 5, 213-219.
10. Björn K.; Teresa, K. and Joseph, S.; Thin Layer Chromatography in Chiral Separations and Analysis CRC Press, 2007.
11. Nishi, H.; Fukuyama, T. and Terabe, S. “Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography.” Journal of chromatography 1991, 553, 503-516.
12. Helfferich, F. “Ligand Exchange: a Novel Separation Technique.” Nature 1961, 189, 1001-1002.
13. Allenmark, S.; Bomgren B. and Boren H. “Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases.” Chromatogr 1983, 264, 63.
14. Zhang, L.; Song M.; Tian, Q. and Min, S. “Chiral separation of l, d-tyrosine and l, d-tryptophan by ct DNA.” Separation and Purification Technology 2007, 55, 388-391.
15. Higuchi, A.; Hiroshi, Y.; Yoon, B. O.; Toshinori, K.; Hara, M.; Maniwa, S. and Saitoh, M. “Optical resolution of amino acid by ultrafiltration using recognition sites of DNA.” Journal of Membrane Science 2002, 205,203-212.
16. Higuchi, A.; Higuchi, Y.; Furuta, K.; Yoon, B. O.; Hara, M.; Maniwa, S. and Saitoh, M. “Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes.” Journal of Membrane Science 2003, 221, 207-218.
17. Dalgliesh, C. E. “The optical resolution of aromatic amino-acids on paper chromatograms.” Journal of the Chemical Society. 1952, 137, 3940-3942
18. Easson, L. H. and Stedman, E. “Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity.” Biochemical Journal 1933, 27, 1257.
19. Booth, T.; Wahnon, D. and Wainer I. “Is chiral recognition a three-point process?.” CHIRALITY 1997, 9, 96-98.
20. Welch, B. D.; VanDemark, A.P.; Annie, H.; Hill, C. P. and Kay M. S. “Potent D-peptide inhibitors of HIV-1 entry.” Proceedings of the National Academy of Sciences 2007, 104, 16828-16833.
21. Borel, J. F. “History of the discovery of cyclosporin and of its early pharmacological development.” Wiener Klinische Wochenschrift 2002, 114, 433-437.
22. Klussmann, S. The Aptamer Handbook: Functional Oligonucleotides and Their Applications. Wiley-VCH, 2006.
23. Robertson, D. L. and Joyce, G. F. “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA.” Nature 1990, 344, 467-468.
24. Tuerk, C. and Gold, L. “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.” Science 1990, 249, 505-510.
25. Ellington, A. D. and Szostak, J. W. “In vitro selection of RNA molecules that bind specific ligands.” Nature 1990, 346, 818-822.
26. Jones, L. A. “Aptamers to hepatitis c virus polymerase” University of New South Wales, 2005.
27. Binkowski, B. F.; Miller R. A. and Belshaw, P. J. “Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules.” Chemistry & Biology 2005, 12, 847-855.
28. Sudarsan, N.; Barrick, J. E. and Breaker, R. R. “Metabolite-binding RNA domains are present in the genes of eukaryotes.” RNA 2003, 9, 644.
29. Tang, J. and Breaker, R. R. “Structural diversity of self-cleaving ribozymes.” Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 5784-5789.
30. Lupold, Shawn E.; Brian J. Hicke, Yun Lin, and Donald S. Coffey. “Identification and Characterization of Nuclease-stabilized RNA Molecules That Bind Human Prostate Cancer Cells via the Prostate-specific Membrane Antigen.” Cancer Research 2002, 62, 4029-4033.
31. Dougan, H.; Lyster, D. M.; Vo, C. V.; Stafford A.; Weitz J. I. and Hobbs J. B. “Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood.” Nuclear Medicine and Biology 2000, 27, 289-297.
32. Lee, Y. S. and Kim, B. G. “Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker.” Electrophoresis 2004, 25, 3730-3739.
33. Pavski, V. and Le, X. C. “Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis.” Analytical. Chemistry 2001, 73, 6070-6076.
34. Burke, D. H. and Gold, L. “RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX.” Nucleic Acids Research 1997, 25, 2020-2024.
35. Green, L. S.; Jellinek, D.; Bell, C.; Beebe, L. A.; Feistner, B. D.; Gill, S. C. and Janjic, N. “Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor.” Chemistry & Biology 1995, 2, 683-695.
36. Eyetech, S. G. “Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results.” Ophthalmology 2003, 110, 979-986.
37. Floege, J.; Ostendorf, T.; Janssen U.; M Burg, Radeke, H. H.; Vargeese, C. and Janjic, N. “Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers.” The American Journal of Pathology 1999, 154, 169-179.
38. Willis, M. C.; Collins, B. D.; Zhang, T.; Green, L. S.; Sebesta, D. P.; Bell, C,, and Collins, B. “Liposome-anchored vascular endothelial growth factor aptamers.” Bioconjugate Chemistry 1998, 9, 573-582.
39. Purschke, W. G.; Falko R.; Frank K. and Sven K. “A DNA Spiegelmer to staphylococcal enterotoxin B.” Nucl. Acids Res. 2003, 31, 3027-3032.
40. Romig, T. S.; Bell, C. and Drolet, D. W. “Aptamer affinity chromatography: combinatorial chemistry applied to protein purification.” Journal of Chromatography B 1999, 731, 275-284.
41. Connor, A. C. and McGown, L. B. “Aptamer stationary phase for protein capture in affinity capillary chromatography.” Journal of Chromatography A 2006, 1111, 115-119.
42. Deng, Q.; German, I.; Buchanan, D. and Kennedy, R. T. “Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase.” Analytical. Chemistry 2001, 73, 5415-5421.
43. Vo, T. U. and McGown, L. B. “Effects of G-quartet DNA stationary phase destabilization on fibrinogen peptide resolution in capillary electrochromatography.” Electrophoresis 2006, 27, 749-756.
44. Spolar, R. S. and Record, M. T. “Coupling of local folding to site-specific binding of proteins to DNA.” Science 1994, 263, 777-784.
45. Gallagher, K. and Kim S. “Electrostatic contributions to heat capacity changes of DNA-ligand binding.” Biophysical. Journal. 1998, 75, 769-776.
46. Kozlov, A. G. and Lohman, T. M. “Adenine base unstacking dominates the observed enthalpy and heat capacity changes for the escherichia coli SSB tetramer binding to single-stranded oligoadenylates.” Biochemistry 1999, 38, 7388-7397.
47. Barbieri, C. M.; Srinivasan, A.R. and Pilch, D. S. “Deciphering the origins of observed heat capacity changes for aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA A-Sites: a calorimetric, computational, and osmotic stress study.” Journal of the American Chemical Society 2004, 126, 14380-14388.
48. Calnan, B. J.; Tidor, B.; Biancalana, S.; Hudson, D. and Frankel, A. D. “Arginine-mediated RNA recognition: the arginine fork.” Science 1991, 252, 1167-1171.
49. Connell, G. J.; Illangesekare, M. and M. Yarus. “Three small ribooligonucleotides with specific arginine sites.” Biochemistry 1993, 32, 5497-5502.
50. Connell, G. J. and Yarus, M. “RNAs with dual specificity and dual RNAs with similar specificity.” Science 1994, 264, 1137-1141.
51. Famulok, M. “Molecular recognition of amino acids by RNA-aptamers: an Image-citrulline binding RNA motif and its evolution into an Image-arginine binder.” Journal of the American Chemical Society 1994, 116, 1698–1706.
52. Harada, K. and Frankel, A. D. “Identification of two novel arginine binding DNAs.” European Molecular Biology Organization Journal 14, 1995 5798-5811.
53. Lin, C. H. and Patel, D. J. “Encapsulating an amino acid in a DNA fold.” Nature structural biology 1996, 3, 1046-1050.
54. Kelly, S. M.; Jess, T. J. and Price, N. C. “How to study proteins by circular dichroism.” BBA-Proteins and Proteomics 2005, 1751, 119-139.
55. Greenfield, N. and Fasman, G. D. “Computed circular dichroism spectra for the evaluation of protein conformation.” Biochemistry 1969, 8, 4108-4116.
56. Pancoska, P.; Bitto, E.; Janota V.; Urbanova, M.; Gupta, V. P. and Keiderling, T. A. “Comparison of and limits of accuracy for statistical analyses of vibrational and electronic circular dichroism spectra in terms of correlations to and predictions of protein secondary structure.” Protein Science: A Publication of the Protein Society 1995, 4, 11384.
57. Sreerama, N. and Woody, R. W. “Computation and analysis of protein circular dichroism spectra.” Methods in Enzymology 2004, 383, 318-351.
58. Johnson W. C. “CD of nucleic acids” In Nakanishi,K.; Berova,N.and Woody,R.W., eds, Circular Dichroism: Principles and Applications. VCH, New York, NY, 1994, pp. 523–540.
59. Johnson, W C. “Circular dichroism and its empirical application to biopolymers.” Methods of Biochemical Analysis 1985, 31, 61-163.
60. Bishop, G R.; Ren, J.; Polander, B. C.; Jeanfreau, B. D.; Trent, J. O. and Chaires, J. B. “Energetic basis of molecular recognition in a DNA aptamer.” Biophysical chemistry 2007, 126, 165-75.
61. Johnson, N. P.; Baase. W. A. and von Hippel, P. H. “Low-energy circular dichroism of 2-aminopurine dinucleotide as a probe of local conformation of DNA and RNA.” Proceedings of the National Academy of Sciences of the United States of America 2004 101, 3426-3431.
62. Lin, P. H.; Yen S. L.; Lin M. S.; Chang Y.; Louis S. R.; Higuchi A. and Chen W. Y. “Microcalorimetrics studies of the thermodynamics and binding mechanism between L-tyrosinamide and aptamer.” Journal of Physical Chemistry B 2008, 112, 6665-6673.
63. Cowan, J. A.; Ohyama T.; Wang D. and Natarajan K. “Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions.” Nucleic. Acids Research. 2000, 28, 2935-2942.
64. Robertson, S.A.; Harada, K.; Frankel, A.D. and Wemmer, D.E. “Structure determination and binding kinetics of a DNA aptamer-Argininamide Complex.” Biochemistry 2000, 39, 946-954.
65. Li, Y.; Geyer, R. and Sen, D. “Recognition of anionic porphyrins by DNA aptamers.” Biochemistry 1996, 35, 6911-6922.
66. Record, M. T.; Anderson, C. F. and Lohman, T. M. “Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity.” Quarterly Reviews of Biophysics 1978, 11, 103-178.
67. Hermann, T. and Patel, D. J.“Adaptive recognition by nucleic acid aptamers.” Science 2000, 287, 820-825.
68. Mikulecky, P. J. and A. L. Feig. “Heat capacity changes associated with nucleic acid folding.” Biopolymers 2006, 82, 38-58.
69. Petrosian, S. A. and Makhatadze, G. I. “Contribution of proton linkage to the thermodynamic stability of the major cold-shock protein of Escherichia coli CspA.” Protein Science: A Publication of the Protein Society 2000, 9, 387-394.
70. Loladze, V. V.; Ermolenko, D. N. and Makhatadze, G. I. “Heat capacity changes upon burial of polar and nonpolar groups in proteins.” Protein Science 2001, 10, 1343-1352.
71. Hamada, H. and Kentaro, S. “l-Argininamide improves the refolding more effectively than l-arginine.” Journal of Biotechnology 2007, 130, 153-160.
72. Fukada, H. and Takahashi, K. “Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride” Proteins-Structure Function and Genetics 1998, 33, 159–166.
73. Fukada H. and Takahashi, K. “Differential scanning calorimetric study of the thermal unfolding of taka-amylase a from aspergillus oryzae” Biochemistry 1987, 26, 4063–4068.
74. Chaires, J. B. “A thermodynamic signature for drug-DNA binding mode.” Archives of Biochemistry and Biophysics 2006, 453, 26-31.
75. Gilbert, S. D.; Stoddard, C. D.; Wise, S. J. and Batey. R. T. “Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.” Journal of Molecular Biology 2006, 359, 754-68.
76. Müller, M.; Weigand, J. E.; Weichenrieder O. and Suess. B. “Thermodynamic characterization of an engineered tetracycline-binding riboswitch.” Nucleic Acids Research 2006, 34, 2607-17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top