(3.235.41.241) 您好!臺灣時間:2021/04/15 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅謹賢
研究生(外文):Jin-shian Luo
論文名稱:金屬叢集的融化現象
論文名稱(外文):Melting scenario in metallic clusters
指導教授:賴山強
指導教授(外文):Shank Kiong Lai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:61
中文關鍵詞:合金金屬叢集金屬叢集融化
外文關鍵詞:bimetallic clustermeltingvelocity autocorrelation functionmetallic cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
我們使用定溫Brownian-type 分子動力學來分析研究(合金)金屬叢集的溫度效應。
比熱CV與δ(Lindemann-like parameter) 這兩個普遍在巨觀系統中運用來描述固—液相變的物理量,當運用在金屬叢集這樣的小系統中,對融化溫度(Tmelt) 的預測始終不一致。而這背後的機制現在已能被深入探討。
而為了能更深入了解融化現象,我們加入了速度自相關函數(velocity autocorrelation function) 以及它的傅立業轉換(即power spectrum),進而發現此物理量與CV主峰所預測的融化溫度範圍一致。
本論文中選取了兩個合金叢集系統Ag1Cu13、Au1Cu13並與一純金屬叢集系統Cu14做深入的比較分析。由這三個不同的金屬叢集,我們可以歸納出不同相對位置的溫度效應以及合金系統中異質原子所造成的差異性。
由分析這些動態資訊,我們觀察到:在低溫區間(T? Tmelt) 有原子的遷移行為(migrational relocation),以及在中溫區間(T< Tmelt) 與分子間交換行為(permutation) 的相互疊加,而在高溫區間(T? Tmelt) 原子的行為會呈現liquid-like或甚至gas-like。
The isothermal Brownian-type molecular dynamics simulation has been applied to study the melting behavior of bimetallic clusters. It was found that the specific heat and Lindermann-like parameter customarily used in bulk system to describe solid-liquid transition show incongruity in the prediction of melting temperature, T_{melt}. The underlying mechanisms that lead to the incompatibility of melting temperatures deduced from these two quantities were analyzed further. To gain insight into the melting behavior, we calculated in addition the velocity autocorrelation function and its Fourier transform, the power spectrum, to extract separately the melting temperature. It appears that the melting temperature inferred from the latter quantities is closer to that deduced from the principal peak position of specific heat. Two bimetallic clusters, Ag₁Cu₁₃ and Au₁Cu₁₃, were selected for thorough investigation. For the cluster morphology, we carried out a quantitative comparison of Ag₁Cu₁₃, Au₁Cu₁₃ and Cu₁₄ to locate the atomic distribution and contrasted between a bimetallic cluster and a pure cluster to learn the thermal reaction of atoms, in particular the impurity atom in the bimetallic cluster. On analyzing the dynamical data, we observed at a lower temperature (T≪T_{melt}) migrational relocation of atoms whose dynamics was superimposed by permutations between atoms at an intermediate temperature (T<T_{melt}), and at a higher temperature (T≈T_{melt}), the atoms behave liquid- or even gas-like.
1 Introduction 1
2 Methodology: Simulation and Theory 2
2.1 Simulation algorithm: isothermal Brownian-type molecular dynamics 2
2.1.1 Equation of motion 2
2.1.2 Many-body Gupta potential 4
2.1.3 Thermal and geometric properties: specific heat and Lindemann-like parameter 4
2.1.4 Dynamical property: velocity autocorrelation function 5
3 Numerical results and discussion 7
3.1 Pure cluster Cu14 7
3.1.1 Specific heat and relative rms bond length fluctuation parameter 7
3.1.2 Velocity autocorrelation function and power spectrum 9
3.2 Bimetallic cluster Ag1Cu13 10
3.2.1 Specific heat and relative rms bond length fluctuation parameter 10
3.2.2 Velocity autocorrelation function and power spectrum 12
3.3 Bimetallic cluster Au1Cu13 13
3.3.1 Velocity autocorrelation function and power spectrum 13
4 Conclusion 13
5 References 14
Figure Captions 16
G.E. Lopez and D.L. Freeman, J. Chem. Phys. 98, 1428 (1993).
M.J. López, P.A. Marcos, and J.A. Alonso, J. Chem. Phys. 104, 1056 (1996).
E.B. Krissinel and J. Jellinek, Chem. Phys. Lett. 272, 301 (1997); Int. J. Quantum Chem. 62, 185 (1997).
S.P. Huang and P.B. Balbuena, J. Phys. Chem B 106, 7225 (2002).
Subramanian K.R.S. Sankaranarayanan, Venkat R. Bhethanabotla and Babu Joseph, Phys. Rev. B 71, 195415 (2005).
K. Michaelian and I.L. Garzón, Eur. Phys. J. D 34, 183 (2005).
Tsung-Wen Yen, S.K. Lai, N. Jakse and J.L. Bretonnet, Phys. Rev. B 75,165420 (2007).
C. Borgs and R. Kotecky, J. Stat. Phys. 79, 43 (1995).
S. Nosé, J. Chem. Phys. 81, 511 (1984); Mol. Phys. 52, 255 (1984).
D. Kusnezov, A. Bulgac and W. Bauer, Ann. Phys. (N.Y.) 204, 155 (1990); A. Bulgac and D. Kusnezov, Phys. Rev. A 42, 5045 (1990).
F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys. 112, 2301 (2000).
C. Mottet, G. Tréglia and B. Legrand, Phys. Rev. B 46, 16018 (1992).
D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔