|
[1] Donald R. Forsdyke, James R. Mortimer. Chargaff’s legacy. Gene 261, 127-137 (2000). [2] E. Chargaff, Chemical specificity of nucleic acids and mechanism of their enzymic degradation. Experientia 6, 201-209 (1950). [3] E. Chargaff, Structure and function of nucleic acids as cell constituents. Fed. Proc. 10, 654-659 (1951). [4] J. D. Watson, F. H. C. Crick, Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964-967 (1953). [5] R. Rudner, J. D. Karkas, E. Chargaff, Separation of B. subtilis DNA into complementary strands. III. Proc. Natl. Acad. Sci. USA 60, 921-922 (1968). [6] S. J. Bell, D. R. Forsdyke, Accounting units in DNA. J. Theor. Biol. 197, 51-61 (1999). [7] N. T. Perna, T. D. Kocher, Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes, J. Mol. Evol. 41 (3), 353-358 (1995). [8] J. R. Lobry, Asymmetric substitution patterns in the two DNA strands of bacteria, Mol. Biol. Evol. 13 (5), 660-665 (1995). [9] A. Grigoriev, Analyzing genomes with cumulative skew diagrams, Nucl. Acids Res. 26 (10), 2286-2290 (1998). [10] J. Sanchez, M. V. Jose, Analysis of bilateral inverse symmetry in whole bacterial chromosomes, Biochem. Biophy. Res. Comm. 299, 126-134 (2002). [11] P. Worning, L. J. Jensen, P. F. Hallin, H. Staerfeld, D. W. Ussery, Origin of replication in circular prokaryotic chromosomes, Env. Micro. 8 (2), 353-361 (2006). [12] Jiuzhou Song, A. Ware, SL Liu, Wavelet to predict bacterial ori ad ter: a tendency towards a physical balance, BMC Genomics 4:17 (2003). [13] N. P. Robinson, I. Dionne, M. Lundgren, V. L. Marsh, R. Bernander, S. D. Bell, Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus, Cell 116, 25-38 (2004). [14] L. M. Kelman, Zvi Kelman, Multiple origins of replication in archaea, TRENDS Microbiol. 12 (9), 400-401 (2004). [15] Ren Zhang, C. T. Zhang, Multiple replication origins of the archaeon Halobacterium species NRC-1, Biochem. Biophy. Res. Comm. 302, 728-734 (2003). [16] M. J. McLean, K. H. Wolfe, K. M. Devine, Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes, J. Mol. Evol. 47, 691-696 (1998). [17] M. Lundgren, A. Andersson, L. Chen, P. Nilsson, R. Bernander, Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination, Proc. Natl. Acad. Sci. USA 101 (18), 7046-7051 (2004). [18] D. P. Clark, L. D. Russell, Molecular biology, Cache River Press (2000). [19] J. M. Freeman, T. N. Plasterer, T. F. Smith, and S. C. Mohr, Patterns of genome organization in bacteria, Science 279, 1827a- (1998). [20] J. R. Lobry, Origin of replication of Mycoplasma genitalium, Science 272, 745-746 (1996). [21] A. Grigoriev, Strand-specific compositional asymmetries in double-stranded DNA virus, Virus Res. 60, 1-19 (1999). [22] S. Fujimori, T. Washio, M. Tomita, GC-compositional strand bias around transcription start sites in plants and fungi, BMC Genomics 6, 26-37 (2005). [23] D. K. Niu, Kui Lin, Da-Yong Zhang, Strand compositional asymmetries of nuclear DNA in eukaryotes, J. Mol. Evol. 57, 325-334 (2003). [24] R. Zhang, Chun-Ting Zhang, Identification of replication origins in archaeal genomes based on the Z-curve method, Archaea 1, 335-346 (2005). [25] S. P. Li, K. L. Ng, M. C. Chung, Quantitative linguistic study of DNA sequences, Physica A 321, 189-192 (2003). [26] R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, M. Simons, H. E. Stanley, Linguistic features of noncoding DNA sequence, Phys. Rev. Lett. 73, 3169-3172 (1994). [27] J. J. Shen, Shuyu Zhang, H. C. Lee, Bailin Hao, SeeDNA: A visualization for K-string content of long DNA sequences and their randomized counterparts, Geno. Prot. Bioinfo. 2(3), 192-196 (2004). [28] Bailin Hao, H. C. Lee, Shuyu Zhang, Fractals related to long DNA sequences and complete genomes, Chaos, Solitons and Fractals 11, 825-836 (2000). [29] C. H. Chang, L. C. Hsieh, T. Y. Chen, H. D. Chen, L. F. Luo, H. C. Lee, Shannon information in complete genome, Computational Systems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE. [30] H. D. Chen, C. H. Chang, L. H. Hsieh, H. C. Lee, Divergence and Shannon information in genomes, Phys. Rev. Lett. 94, 178103 (2005). [31] Rice Annotation Project Database; http://rapdb.lab.nig.ac.jp/ [32] National Center for Biotechnology Information genome database; http://www.ncbi.nlm.nih.gov/ [33] Motoo Kimura, Evolutionary rate at the molecular level, Nature 217, 624-626 (1968). [34] GenomeMine Database, http://www.genomics.ceh.ac.uk/cgi-bin/genomemine/gminemenu.cgi [35] P. F. Baisnee, Steve Hampson, Pierre Baldi, Why are complementary DNA strands symmetric? Bioinformatics 18 (8), 1021-1033 (2002). [36] D. Qi and A. J. Cuticchia, Compositional symmetries in complete chromosomes. Bioinformatics 17, 557-559 (2001). [37] D. R. Forsdyke, Symmetry observations in long nucleotide sequences: a commentary on the Discovery Note of Qi and Cuticchia. Bioinformatics 18, 215-217 (2002). [38] V. V. Prabhu, Symmetry observations in long nucleotide sequences, Nucl. Acids Res. 21 (12) 2797-2800 (1993). [39] Aaron C.E. Darling, Bob Mau, F. R. Blattner and Nicole T. Perna, Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements. Genome Res. 14, 1394-1403 (2004). [40] M. Lynch, Gene duplication and evolution, Science 297, 945-947 (2002). [41] M. V. Jose, T. Govezensky, and J. R. Bobadilla, Statistical properties of DNA sequences revisited: the role of inverse bilateral symmetry in bacterial chromosomes, Physica A: Statistical Mechanics and its Applications 351, 477-498 (2005). [42] F. R. Blattner, G. Plunkett, C. A. Bloch et al., The complete genome sequence of Escherichia coli K-12, Science 277, 1453-1474 (1997). [43] J. Mrazek and S. Karlin, Strand compositional asymmetry in bacterial and large viral genome, Proc. Natl. Acad. Sci. USA 95, 3720-3725 (1998). [44] M. Picardeau, J. R. Lobry, and B. J. Hinnebusch, Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdoferi linear and circular plasmids, Genome Res. 10, 159401604 (2000). [45] R. Nussinov, Some indications for inverse DNA duplication, J. Theor. Biol. 95, 783-791 (1982). [46] C. K. Biebricher and R. Luce, In vitro recombination and terminal elongation of RNA by Q beta replicase. Embo. J. 11, 5129-5135 (1992). [47] A. Volz, H. Wende, K. Laun, and A. Ziegler, Genesis of the ILT/LIR/MIR clusters within the human leukocyte receptor complex. Immunol. Rev. 181, 39-51 (2001). [48] P. W. Messer, P. F. Amdt, and M. Lassig, Solvable sequence evolution models and genomic correlations. Phys. Rev. Lett. 94, 138103 (2005). [49] S. Ohno, Evolution by gene duplication. George Allen and Unwin, London (1970). [50] K. H. Wolfe and D. C. Shields, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 387, 708-713 (1997). [51] M. Kellis, B. W. Birren, and E. S. Lander, Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae, Nature 428, 617-624 (2004). [52] I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev, Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54-61 (2007). [53] A. Christoffels, E. G. Koh, J. M. Chia, S. Brenner, S. Aparicio, and B. Venkatesh, Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 21, 1146-1151 (2004). [54] O. Jaillon, J. M. Aury, F. Brunet et al., Genome duplication in the teleost fish Tetradon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946-957 (2004). [55] Inverse Symmetry Database, http://pooh.phy.ncu.edu.tw/~kensinro/InvSym/Index.htm [56] S. L. Salzberg, A. J. Salzberg, A. R. Kerlavage, and J. F. Tomb, Skewed oligomers and origins of replication, Gene 217, 57-67 (1998). [57] J. A. Bailey, Z. Gu, R. A. Clark et al., Recent segmental duplications in the human genome. Science 297, 1003-1007 (2002). [58] Hsieh L. C., L. Luo, F. Ji, and H. C. Lee, Minimal model for genome evolution and growth. Phys. Rev. Lett. 90, 018101 (2003). [59] Zhang L., H. H. Lu, W. Y. Chung, J. Yang and W. H. Li, Patterns of segmental duplication in the human genome. Mol. Biol. Evol. 22, 135-141 (2005). [60] D. M. Gilbert, Making sense of eukaryotic DNA replication origins. Science 294, 96-100 (2001).
|