跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許文彥
研究生(外文):Wen-Yen Hsu
論文名稱:以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程
論文名稱(外文):Probing the relationship between visual attention and oculomotor preparation with LATER model and TMS
指導教授:阮啟弘阮啟弘引用關係
指導教授(外文):Chi-hung Juan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:認知與神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:110
中文關鍵詞:數學模型跨顱磁刺激視覺注意力眼球跳視
外文關鍵詞:saccade eye movementvisual attentionTMSlater model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
注意力和眼球運動準備歷程之間的關係一直是心理學家感興趣的議題之一,Posner等人在1980年運用著名的Posner paradigm 顯示這兩者在功能上的分離,然而負責處理視覺注意力以及眼球運動歷程的神經機制是否分離到目前仍然是一個持續在爭論的議題。由Rizzolatti等人所提出的注意力的前運動理論(the premotor theory of attention) 認為負責視覺注意力以及動作控制的機制為同一個(Rizzolatti, 1983; Sheliga et al., 1994; Sheliga et al., 1995)。 部分來自行為以及腦造影實驗的結果支持了前運動理論的看法(Sheliga et al. 1995, Corbetta et al., 1998),相反的,來自神經細胞活化紀錄的實驗顯示了負責這兩個機制的大腦區域可能在空間上重疊但在時間向度上是分離的(Hanes and Schall, 1996)。Juan(2008)等人在人類的跨顱磁刺激實驗也觀察到類似的結果,他們發現受試者在執行視覺搜尋作業時有兩個獨立的時間點可以施打跨顱磁刺激有效的延長眼球跳視反應時間。這樣的結果被認為是支持這兩個機制在時間向度上分離的證據。有趣的是,眼球跳視反應時間是一個由許多歷程相加的複合體,因此Juan等人(2008)所觀察到的反應時間延長是否分別代表注意力及眼動準備需要更進一步的探討。本研究試圖結合跨顱磁刺激的實驗以及數學模型以進一步探究這個議題。過去已經有研究者結合跨顱磁刺激以及數學模型探討後頂葉(PPC)在視覺選擇扮演的角色(Hung et al., 2005)。結合這兩種技術探討注意力及眼動準備歷程的關係,本研究是首開先例。
如同Juan等人(2008)的研究,此研究同樣觀察到了眼球跳視產生前施打的跨顱磁刺激會有效的延長眼球跳視反應時間。以數學模型進一步分析的結果顯示,晚期的跨顱磁刺激主要影響的是 。這個數值代表的是Carpenter的Linear Approach to Threshold with Ergodic Rate (LATER) model中的眼動準備歷程,而不會影響代表視覺選擇的 。然而,此研究並沒有觀察到如Juan等人觀察到的早期跨顱磁刺激的效果,可能的原因為我們沒有辦法將那些未經視覺選擇的反應刪除。總結來說,本研究展示了視覺選擇以及眼動準備在時間向度上的部分分離,並進一步提出未來可進一步實行的實驗。
The relationship between covert attention and eye movement has been a hotly debated issue among psychologists over a long period of time. In 1980, Posner demonstrated the functional dissociation between covert attention and overt eye movement with the classic orienting paradigm. However, the issue that whether the neural mechanism responsible for covert attention and eye movement is temporally or structural dissociated is still in dispute. The premotor theory of attention (Rizzolatti, 1983; Sheliga et al., 1994; Sheliga et al., 1995) in its strongest form states that the same mechanisms are responsible for controlling action and spatial attention. Whereas some behavioral and neuroimaging studies support the notion of premotor theory (Sheliga et al. 1995, Corbetta et al., 1998), results from single-unit recording and microstimulation experiments suggest the two might overlapped structurally but dissociable temporally(Hanes and Schall, 1996). Recently, Juan et al. (2008) demonstrated that TMS over human FEF can prolong saccade latencies at two distinct time points. The finding was taken as the evidence that supports the dissociation of the two in temporal dimension. However, the prolonged saccade latencies were compounded. To verify whether the prolonged saccade latencies by TMS at two different time points really indicate the dissociation of the two mechanisms, the combination of TMS and model fitting was applied in this study to elucidate the issue. The attempt to combine TMS on human subjects with model fitting has been made on PPC to probe the top-down influence of visual selection (Hung et al., 2005). The combination of TMS over FEF with model fitting is a novel attempt toward the relationship between attention and oculomotor preparation.
The late TMS effect was replicated as in Juan et al. (2008), and the results of model fitting reveal that the late TMS effect is mainly acting on , which indicates oculomotor preparation in Carpenter’s Linear Approach to Threshold with Ergodic Rate (LATER) model. The early TMS effect was not replicated. One of the possible reasons could be that the trials without visual selection were not excluded for further analysis as in Juan et al. (2008). In summary, the results of this study show a partial dissociation of attention and oculomotor preparation with TMS at late time point. Further experiments are suggested to probe the effect of TMS at early time point.
1 Introduction 1
1.1 Pro- and anti- saccade 4
1.2 Neurophysiological studies 9
1.3 Decision-making process 14
1.4 LATER model 18
2 Experiment 1 23
2.1 Method 23
2.1.1 Apparatus 23
2.1.2 Subjects 25
2.1.3 Stimuli, procedure and design 26
2.1.4 Saccade analysis 29
2.2 Results 30
2.3 Summary 31
3 Experiment 2 33
3.1 Method 34
3.1.1 Apparatus 34
3.1.2 Subjects 34
3.1.3 Stimuli, procedure and design 34
3.1.4 Saccade analysis 36
3.2 Results 37
3.3 Summary 39
3.4 Model fitting 39
Table of model parameters for each subject 47
4 Experiment 3 55
4.1 Introduction of TMS 55
4.2 Method 57
4.2.1 Apparatus 57
4.2.2 Subjects 58
4.2.3 Stimuli, procedure and design 58
4.2.4 Saccade analysis 61
4.3 Results 61
Results of total SRT 61
Results of model fitting 70
4.4 Summary 79
5 General Discussion 80
5.1 Effect of probability on antisaccade cost 80
5.2 Effect of probability and ratio 80
5.3 Effect of probability and ratio on and 81
5.4 Effect of TMS on and 81
5.5 Probing segregation of visual seletion and oculomotor preparation 83
Reference 92
Carpenter RHS (1981) Oculomotor Procrastination. In Fisher DF, Monty RA & Senders JW (Eds.), Eye movements: Cognition and visual perception (pp. 237–246). Hillsdale, New Jersey: Lawrence Erlbaum.
Carpenter, R. H. (2004). Contrast, probability, and saccadic latency; evidence for independence of detection and decision. Curr Biol, 14(17), 1576-1580.
Carpenter, R. H., & Williams, M. L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature, 377(6544), 59-62.
Chambers, C. D., & Mattingley, J. B. (2005). Neurodisruption of selective attention: insights and implications. Trends Cogn Sci, 9(11), 542-550.
Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A, 95(3), 831-838.
Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res, 36(12), 1827-1837.
Dorris, M. C., & Munoz, D. P. (1998). Saccadic probability influences motor preparation signals and time to saccadic initiation. J Neurosci, 18(17), 7015-7026.
Dyckman, K. A., & McDowell, J. E. (2005). Behavioral plasticity of antisaccade performance following daily practice. Exp Brain Res, 162(1), 63-69.
Fecteau JH, Munoz DP (1999) Exploring the consequences of the previous trial. Psychol Rev 106:261–300.
Gitelman, D. R., Parrish, T. B., Friston, K. J., & Mesulam, M. M. (2002). Functional anatomy of visual search: regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. Neuroimage, 15(4), 970-982.
Glimcher PW (2001). Making choices: the neurophysiology of visual-saccadic decision making. Trends Neurosci 24:654-659.
Gmeindl, L., Rontal, A., & Reuter-Lorenz, P. A. (2005). Strategic modulation of the fixation-offset effect: dissociable effects of target probability on prosaccades and antisaccades. Exp Brain Res, 164(2), 194-204.
Godijn R, Kramer AF. 2006. Prosaccades and antisaccades to onsets and color singletons: evidence that erroneous prosaccades are not reflexive. Exp Brain Res. 172:439--448.
Godijn R, Kramer AF. 2007. Antisaccade costs with static and dynamic targets. Perception & Psychophysics. 69: 802-815
Godijn, R. & Kramer, A.F. (in press). The effects of attentional demands on the antisaccade cost. Perception & Psychophysics
Gold, J. I., & Shadlen, M. N. (2003). The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J Neurosci, 23(2), 632-651.
Gottlieb, J., & Goldberg, M. E. (1999). Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat Neurosci, 2(10), 906-912.
Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427-430.
Hung J, Driver J, Walsh V. 2005. Visual selection and posterior parietal cortex: effects of repetitive transcranial magnetic stimulation on partial report analyzed by Bundesen’s theory of visual attention. J Neurosci. 25:9602--9612.
Hunt, A. R., & Kingstone, A. (2003). Covert and overt voluntary attention: linked or independent? Brain Res Cogn Brain Res, 18(1), 102-105.
Juan, C. H., Muggleton, N. G., Tzeng, O. J., Hung, D. L., Cowey, A., & Walsh, V. (2008). Segregation of Visual Selection and Saccades in Human Frontal Eye Fields. Cereb Cortex.
Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proc Natl Acad Sci U S A, 101(43), 15541-15544.
Kristjansson, A., Chen, Y., & Nakayama, K. (2001). Less attention is more in the preparation of antisaccades, but not prosaccades. Nat Neurosci, 4(10), 1037-1042.
Kristjansson, A., Vandenbroucke, M. W., & Driver, J. (2004). When pros become cons for anti- versus prosaccades: factors with opposite or common effects on different saccade types. Exp Brain Res, 155(2), 231-244.
Massen C. 2004. Parallel programming of exogenous and endogenous components in the antisaccade task. Q J Exp Psychol A. 57:475--498.
Milstein, D. M., & Dorris, M. C. (2007). The influence of expected value on saccadic preparation. J Neurosci, 27(18), 4810-4818.
Muggleton NG, Juan CH, Cowey A, Walsh V (2003) Human frontal eye fields and visual search. J Neurophysiol 89:3340 –3343.
Munoz, D. P., & Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci, 5(3), 218-228.
Nakahara, H., Nakamura, K., & Hikosaka, O. (2006). Extended LATER model can account for trial-by-trial variability of both pre- and post-processes. Neural Netw, 19(8), 1027-1046.
Olk, B., & Kingstone, A. (2003). Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport, 14(1), 151-155.
O''Shea, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2004). Timing of target discrimination in human frontal eye fields. J Cogn Neurosci, 16(6), 1060-1067.
Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233-238.
Posner, M. I. (1980). Orienting of attention. Q J Exp Psychol, 32(1), 3-25.
Ratcliff, R. (2001). Putting noise into neurophysiological models of simple decision making. Nat Neurosci, 4(4), 336-337.
Reddi, B.A.J. (2001). Decision making: The two stages of neuronal judgement. Curr. Biol. 11, 603–606.
Rizzolatti G. 1983. Mechanisms of selective attention in mammals. In: Ewert J, Capranica RR, Ingle DJ, editors. Advances in vertebrate neuroethology. New York: Plenum Press. p. 261--297.
Ro, T., Farne, A., & Chang, E. (2002). Locating the human frontal eye fields with transcranial magnetic stimulation. J Clin Exp Neuropsychol, 24(7), 930-940.
Schall, J. D., & Hanes, D. P. (1993). Neural basis of saccade target selection in frontal eye field during visual search. Nature, 366(6454), 467-469.
Sheliga BM, Riggio L, Rizzolatti G. 1994. Orienting of attention and eye movements. Exp Brain Res. 98:507--522.
Sheliga BM, Riggio L, Rizzolatti G. 1995. Spatial attention and eye movements. Exp Brain Res. 105:261--275.
Smith, D. T., & Schenk, T. (2007). Enhanced probe discrimination at the location of a colour singleton. Exp Brain Res, 181(2), 367-375.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top