|
1.Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): p. 6-21. 2.Bird, A.P., CpG-rich islands and the function of DNA methylation. Nature, 1986. 321(6067): p. 209-13. 3.Ballestar, E. and M. Esteller, The impact of chromatin in human cancer: linking DNA methylation to gene silencing. Carcinogenesis, 2002. 23(7): p. 1103-9. 4.Karymov, M.A., et al., DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J, 2001. 15(14): p. 2631-41. 5.Singal, R. and G.D. Ginder, DNA methylation. Blood, 1999. 93(12): p. 4059-70. 6.Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. J Mol Biol, 1987. 196(2): p. 261-82. 7.Takai, D. and P.A. Jones, Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A, 2002. 99(6): p. 3740-5. 8.Matsuo, K., et al., Evidence for erosion of mouse CpG islands during mammalian evolution. Somat Cell Mol Genet, 1993. 19(6): p. 543-55. 9.Eckhardt, F., et al., DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006. 38(12): p. 1378-85. 10.Bhasin, M., et al., Prediction of methylated CpGs in DNA sequences using a support vector machine. FEBS Lett, 2005. 579(20): p. 4302-8. 11.Das, R., et al., Computational prediction of methylation status in human genomic sequences. Proc Natl Acad Sci U S A, 2006. 103(28): p. 10713-6. 12.Illingworth, R., et al., A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol, 2008. 6(1): p. e22. 13.Grunau, C., et al., MethDB--a public database for DNA methylation data. Nucl. Acids Res., 2001. 29(1): p. 270-274. 14.Amoreira, C., W. Hindermann, and C. Grunau, An improved version of the DNA Methylation database (MethDB). Nucleic Acids Res, 2003. 31(1): p. 75-7. 15.Rollins, R.A., et al., Large-scale structure of genomic methylation patterns. Genome Res, 2006. 16(2): p. 157-63. 16.Wingender, E., et al., TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res, 2000. 28(1): p. 316-9. 17.Matys, V., et al., TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res, 2006. 34(Database issue): p. D108-10. 18.Kel, A.E., et al., MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res, 2003. 31(13): p. 3576-9. 19.Grunau, C., S.J. Clark, and A. Rosenthal, Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res, 2001. 29(13): p. E65-5. 20.Lewin, J., et al., Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics, 2004. 20(17): p. 3005-12. 21.Curwen, V., et al., The Ensembl automatic gene annotation system. Genome Res, 2004. 14(5): p. 942-50. 22.Chih-Jen, L., C.W. Ruby, and S.S. Keerthi, Trust region Newton methods for large-scale logistic regression, in Proceedings of the 24th international conference on Machine learning. 2007, ACM: Corvalis, Oregon. 23.Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. 2000: {Cambridge University Press}. 24.Jiawei Han, M.K., Data mining : concepts and techniques. 2 edition ed. 2006: Morgan Kaufmann. 25.Fang, F., et al., Predicting methylation status of CpG islands in the human brain. Bioinformatics, 2006. 22(18): p. 2204-9. 26.Bock, C., et al., CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet, 2006. 2(3): p. e26. 27.Frank, I.H.W.a.E., Data Mining: Practical machine learning tools and
|