跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱士弘
研究生(外文):Harry Chiou
論文名稱:在同儕網路中以興趣為基礎之同儕篩選研究
論文名稱(外文):Interest-based Peer Selection in P2P network
指導教授:楊鎮華楊鎮華引用關係
指導教授(外文):Stephen J.H. Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:80
中文關鍵詞:同儕篩選個人化檔案同儕網路JXTA平台與意相似度
外文關鍵詞:semantic similarityJXTA platformpeer-to-peer networkuser profilepeer selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
現今大部分P2P網路搜尋軟體缺乏配對興趣相似peer機制,這些P2P系統會造成網路頻寬資源浪費,以及搜尋品質下降。這種現象的問題是由於缺乏相似興趣的peers配對。因此我們發展一套配對相似興趣的peers,以配對方式來分析出相近興趣的peers。篩選結果會根據該peer的興趣配對出極相似高的其它可能提供回答peers列表,同時針對相似高的提供回答的peers進行搜尋資料,而回傳搜尋結果會依照個人興趣喜好的程度來進行分類與排序。為了降低使用者瀏覽搜尋結果時間,系統會將詢問者瀏覽回饋結果來更新使用者興趣喜好程度。在實驗結果得知,我們提出的配對興趣近似peer方法明顯降低使用者搜尋結果時間,在長期興趣下,提升了P2P網路的搜尋效能的準確性,更貼近詢問者資訊需求。
Currently, most of P2P search engines lack a similar interest peer selection mechanism. Hence, it wastes network bandwidth and degenerate the searching quality. Therefore, we develop an interest-based peer selection mechanism. Our approach discovers other similar peers which calculate the interest similarity between a questioner’s preference and other peers’ preference. So, a questioner can obtain other similar peers which are possibility to answer the questioner’s query. Finally, system can transmit the questioner’s query to other similar peers. The query result is classified and ranked by personalized preference to send the questioner. Our method facilitates to satisfy the questioner information requirement and to reduce the searching time. We use a feedback relevance approach to update a peer interest profile. It provides a filtering unnecessary information approach to aim at questioners’ wanting information. In the experiment result, we show that our approach can reduce the searching time. By recording and utilizing long-term user’s interest, we can improve the precision of retrieval performance and satisfy user’s information requirement.
摘 要 I
Abstract II
誌 謝 III
Contents IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction 1
1.1 What is the motivation of this research? 1
1.2 What kinds of problems to be solved? Domain & scope. 3
1.3 Why are the problems significant? Characteristics & challenges 4
1.5 How to solve the problems? Method & systems. 6
1.6 Contribution of our solutions? 7
Chapter 2 Related work 8
2.1 General description of the problems (domain & scope ) 8
2.1.1 Current research status & challenges 8
2.1.2 Various approaches of problem solving 10
2.2 List and describe all the possible approaches of problem solving 14
2.2.1 Academic research 14
2.3 Comparison of various approaches with our approach (SWOT analysis) 21
2.3.1 Strength, Weakness 21
Chapter 3 Method and solution 23
3.1 Methodology & theory 23
3.1.1 Definition, axiom, theorem 23
3.1.1.1 Information collection 27
3.1.1.2 Classified Peers 29
3.1.1.3 Rank Peers 31
3.2 Algorithms 32
3.2.1 Procedure of problem solving 32
Chapter 4 System Implementation 45
4.1 Implementation environment 45
4.1.1 Hardware and software platforms 45
4.1.2 Implementation languages & tools 45
4.2 System architecture 46
High-level system design and analysis( blockdiagrams ) 46
4.2.2 Low-level system design and analysis ( process, flow, database structure ) 47
4.3 System demo 49
4.3.1 User interface, execution results, print screens, etc. 49
4.4 Experience learned form the implementation 54
4.4.1 Difficulties and possible solutions 54
Chapter 5 Experiment and Discussion 55
5.1 Experiment design and setup 55
5.1.1 Experiment parameter 55
5.1.2 Roles, hardware, software, and network requirements setup 55
5.2 Quantitative evaluation 61
5.2.1 Performance evaluation 61
5.2.1.1 Broadcast possibility 61
5.2.1.2 Searching precision 62
Chapter 6 Conclusion and future Work 64
Reference 65
[1]Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., & Shenker, S. (2003, Aug.). Making Gnutella-like P2P Systems Scalable. In Proceedings of ACM SIGCOMM 2003
[2]Ripeanu, M., Foster, I., & Iamnitchi, A. (2002). Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing Journal, vol. 6, no. 1.
[3]Zhu, Y., & Hu, Y. (2006, Dec.). Enhancing Search Performance on Gnutella-Like P2P Systems. In IEEE Transactions on Parallel and Distributed Systems.
[4]Gnutella website in Gnutella.com from http://www.gnutella.com.
[5]Ravishankar, C. V. (2002, march 21), The Gnutella Protocol Specification verson0.4
[6]An Interested-based Architecture for Peer-to-Peer Network Systems. Chen, Wen-Tsuen, Chao, Chi- Hong and Chiang, Jeng-Long. s.l. : AINA 2006, 2006.
[7]Q. Gao, Z. Qiu, “An Interest-based P2P RDF Query Architecture, “CNDS lab, Peking university, Beijing, China, Proceedings of the First International Conference on Semantics, Knowledge, and Grid (SKG 2005).
[8]P. Haase, R. Siebes, F. van Harmelen, “Peer selection in peer-to-peer networks with semantic topologies,”in: International Conference on Semantics of a Networked World: Semantics for Grid Databases, June 2004, Paris.
[9]Z. Wu and M. Palmer, “Verb Semantics and Lexical Selection,” in Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics (ACL''94), pp. 133-138, Las Cruces, New Mexico, 1994.
[10]Yuhua Li, Zuhair A. Bandar, and David McLean, “An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources,” IEEE Transactions on Knowledge and Data Engineering, pp. 871-882, July/August 2003.
[11]P.W. Lord, R.D. Stevens, A. Brass, and C.A, “Goble. Investigating Semantic Similarity Measures across the Gene Ontology: the Relationship between Sequence and Annotation," Bioinformatics, pp. 1275-1283, 2003
[12]A. Tversky. Features of Similarity. Psycological Review, pp. 327-352, 1977.
[13]M.A. Rodriguez and M.J. Egenhofer, “Determining Semantic Similarity Among Entity Classes from Different Ontologies,” IEEE Tramsactions on Knowledge and Data Engineering, pp. 442-456, March/April 2003.
[14]W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palm´er, and T. Risch. EDUTELLA: a P2P Networking Infrastructure based on RDF. In WWW 11 Conference Proceedings, Hawaii, USA, May 2002.
[15]C. Qu, and W. Nejdl, “Interacting the Edutella/JXTA Peer-to-Peer Network with Web Services”, Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04), 2004.
[16]W. NEJDL, B. WOLF, S. STAAB, AND J. TANE, Edutella: Searching and annotating resources within an RDF-based P2P network. In Proceedings of the Semantic Web Workshop, 11th International World Wide Web Conference (Honolulu, Hawaii, USA, May 2002).
[17]The Edutella Homepage, http://www.edutella.org/edutella.shtml.
[18]RDF, http://www.w3.org/RDF/.
[19]Datalog, http://www.datalogtechnology.com.
[20]RDF Query Exchange Language (QEL), http://edutella.jxta.org/spec/qel.html.
[21]P. Haase et al. Bibster - a semantics-based bibliographic peer-to-peer system. In F. van Harmelen, S. McIlraith, and D. Plexousakis, editors, Proceedings of the Third International Semantic Web Conference (ISWC2004), LNCS, pages 122–136, Hiroshima, Japan, 2004. Springer
[22]P. Haase, N. Stojanovic, Y. Sure, and J. Volker. Personalized information retrieval in bibster, a semantics-based bibliographic peer-to-peer system. K. Tochtermann and H. Maurer, editors, Proceedings of the 5th International Conference on Knowledge Management (I-KNOW 05), pages 104–111, Graz, Austria, JUL 2005.
[23]BibTeX files , http://bib2web.djvuzone.org/bibtex.html.
[24]ACM Computing Classification System , http://portal.acm.org/ccs.cfm?part=author&coll=portal&dl=GUIDE&CFID=76617060&CFTOKEN=38431768.
[25]X. Xiang, Y. Shi, L. Guo, “Rich Metadata Searches Using the JXTA Content Manager Service”, Proceedings of the 18th International Conference on Advanced Information Networking and Applications - Volume 2, IEEE Computer Society, 2004, p. 624
[26]Metadata search download, http://www.sun.com/software/opensource/java/project_overview.jsp.
[27]Dublin core, http://dublincore.org/
[28]OWL, http://www.w3.org/TR/owl-features/.
[29]J. Broeskstra, A. Kampman, SeRQL: A Second Generation RDF Query Language, SWAD-Europe Workshop on Semantic Web Storage and Retrieval, 13-14 November 2003, Vrije Universiteit, Amsterdam, Netherlands.
[30]Jena, http://jena.sourceforge.net/
[31]Jena API, http://jena.sourceforge.net/ontology/index.html
[32]SPARQL , http://www.w3.org/TR/rdf-sparql-query/.
[33]MESH, http://www.nlm.nih.gov/mesh/.
[34]A. Hliaoutakis P. Raftopoulou E. G.M. Petrakis, G. Varelas. X-Similarity: Com- puting Semantic Similarity between Concepts from Di?erent Ontologies. Journal of Digital Information Management (JDIM), 4(4):233{238, December 2006.
[35]Wordnet, http://wordnet.princeton.edu/.
[36]R. Rada, H. Mili, E. Bicknell, and M. Bletner, 1989, “Development and Application of a Metric on Semantic Nets”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 1, 17-30.
[37]A. Hliaoutakis, “Semantic Similarity Measures in MeSH Ontology and their application to Information Retrieval on Medline,” Master’s thesis, Technical University of Crete, Greek, 2005.
[38]W. Nejld, W. Siberski, U. Thaden, and W.-T. Balke. Top-k query evaluation for schemabased peer-to-peer networks. In Proceedings of 3rd International Semantic Web Conference (ISWC 2004), 2004.
[39]A. Loser, C. Tempich, B. Quilitz, W.-T. Balke, S. Staab, and W. Nejdl. Searching dynamic communities with personal indexes. Technical report, University of Karlsruhe, Institute AIFB, 2005
[40]R. J. Brachman, What is-a is and isn’t: An analysis of taxonomic links in semantic networks. IEEE Computer, /6(10), 30-36, 1983.
[41]Prot?g?, http://protege.stanford.edu/
[42]Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC ontology - Semantic Web for Research Communities. In C. Bento, A. Cardoso, and G. Dias, editors, Proceedings of the 12th Portuguese Conference on Artificial Intelligence (EPIA 2005), volume 3803 of LNCS, pages 218 – 231, Covilha, Portugal, Dec 2005. Springer.
[43]Semantic Web for Research Communities, http://ontoware.org/projects/swrc/.
[44]Open Directory Project, http://www.dmoz.org/.
[45]NSG, http://www.isi.edu/nsnam/vint/index.html.
[46]PeerSim, http://peersim.sourceforge.net/.
[47]Gian Paolo Jesi. PEERSIMHOWTO: build a new protocol for the peersim simulation framework. http://peersim.sourceforge.net/tutorial1/tutorial1.html, November 2004.
[48]Oversim, http://www.oversim.org/.
[49]I. BAUMGART, B. HEEP, AND KRAUSE, S. Oversim: A flexible overlay network simulation framework. In Proc. of IEEE Global Internet (May 2007).
[50]P2Psim, http://pdos.csail.mit.edu/p2psim/
[51]A. ROWSTRON, P. AND DRUSCHEL. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001) (Nov. 2001).
[52]Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. Submission to ACM SIGCOMM, 2001.
[53]N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,“Skipnet: A scalable overlay network with practical locality properties,” in Proc. USITS, Seattle, WA, Mar. 2003, pp. 113–126.
[54]M´ark Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation in large dynamic networks. ACM Transactions on Computer Systems, 23(3):219– 252, August 2005.
[55]A. Montresor, “A Robust Protocol for Building Superpeer Overlay Topologies,” in Proceedings of the 4th International Conference on Peerto- Peer Computing (P2P 2004). Zurich, Switzerland: IEEE, Aug. 2004, pp. 202–209.
[56]M. Jelasity and O. Babaoglu. T-Man: Fast gossip-based construction of large-scale overlay topologies. Technical Report UBLCS-2004-7, University of Bologna, Department of Computer Science, Bologna, Italy, May 2004.
[57]D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu, “Peer-to-peer computing,” Technical Report HPL-2002-57, HP Lab, 2002.
[58]W. B. Croft, S. Cronen-Townsend, and V. Larvrenko. Relevance feedback and personalization: A language modeling perspective. In DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries, 2001.
[59]Tempich, C., Staab, S., Wranik, A.: REMINDIN'': Semantic query routing in peerto- peer networks based on social metaphors. In: Proc. of the 13th Int. World Wide Web Conference, WWW 2004, 2004.
[60]M. Ehrig et al. Towards evaluation of peer-to-peer-based distributed knowledge management systems. In L. van Elst et al., editors, “Agent-Mediated Knowledge Management International Symposium AMKM 2003” Stanford, CA, USA, LNAI, pages 73–88. Springer, Berlin, 2003.
[61]T. K. Landauer, S. T. Dumais, A solution to Plato''s problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211-240, 1997.
[62]Microsoft Access, http://office.microsoft.com/zh-tw/access/default.aspx.
[63]Brase, J., and Painter, M. (2004). Inferring Metadata for a Semantic Web Peer-to-Peer Environment. Educational Technology & Society, 7 (2), 61-67.
[64]Iyer, S., Rowstron, A. & Druschel, P. (2002). Squirrel: A decentralized peer-to-peer Web cache. In Proceedings of ACM Symposium on Principles of Distributed Computing, PODC.
[65]A. Puerta, J. Egar, S. Tu, & M. Musen. A Multiple-Method Knowledge-Acquisition Shell for the Automatic Generation of Knowledge-Acquisition Tools. Sixth Workshop on Knowledge Acquisition for Knowledge-Based Systems, Banff, Alberta, 20-1 to 20-19. 1992.
[66]H. Knublauch. Ontology-Driven Software Development in the Context of the Semantic Web: An Example Scenario with Prot?g?/OWL. International Workshop on the Model-Driven Semantic Web, Monterey, CA, 2004.
[67]M. J. O''Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E. Grosso, M. A. Musen. Supporting Rule System Interoperability on the Semantic Web with SWRL. Fourth International Semantic Web Conference (ISWC2005), Galway, Ireland, 2005.
[68]M. J. O''Connor, H. Knublauch, S. W. Tu, & M. A. Musen. Writing Rules for the Semantic Web Using SWRL and Jess. 8th International Protege Conference, Protege with Rules Workshop, Madrid, Spain, 2005.
[69]M. Crubezy, M. J. O''Connor, D. L. Buckeridge, Z. S. Pincus, & M. A. Musen. Ontology-Centered Syndromic Surveillance for Bioterrorism. IEEE Intelligent Systems,20(5):26-35. 2005.
[70]Tsoumakos, D., & Roussopoulos, N.(2003). Adaptive Probabilistic Search for Peer-to-Peer Networks. In 3rd IEEE Intl Conference on P2P Computing
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top