(3.215.77.193) 您好!臺灣時間:2021/04/17 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張琪芬
研究生(外文):Chi-Fen Chang
論文名稱:利用化學水浴沉積法製作Ni-ZnO光電極之研究
論文名稱(外文):The Investgation of Producing Ni-ZnO Thin Film by Chemical Bath Deposition Method
指導教授:洪勵吾
指導教授(外文):Lih-Wu Hourng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:112
中文關鍵詞:光電流吸收度摻雜能隙化學水浴沉積法
外文關鍵詞:chemical bath deposition (CBD)photocurrentabsorbanceband gapdoped
相關次數:
  • 被引用被引用:5
  • 點閱點閱:315
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討氧化鋅薄膜摻雜不同濃度Ni2+離子時,於不同參數條件下對吸收度及光電流之影響。實驗以化學沉積水浴沉積法(CBD)進行鍍膜之方式,其優點在於成本低、低溫操作且製程簡單容易。由於氧化鋅薄膜屬於寬能隙,無法在可見光之波段被吸收,故藉由掺雜Ni2+離子,增加中間能隙之位置,有利增加太陽光的吸收,而提升光電流。
實驗中,首先先探討各種變因對純氧化鋅之影響,取出最佳參數條件後,再進行Ni2+離子之摻雜,Ni2+離子摻雜量分別為4%、6%、8%及10%,觀察在不同參數條件下,其薄膜結構、吸收光譜與光電流性質之影響。本研究發現當R=2.25、pH=13、沉積溫度為70℃、沉積時間與方式為分次沉積1h且共沉積3次後熱處理一次,總共沉積9 times (熱處理3次)後,並於熱處理溫度為450℃、熱處理時間為2h (升降溫速率為3℃/min)時,以摻雜0.01M 8% Ni之參數條件下之吸收度與光電流為最高,其吸收度可達約1.2以上,而光電流在固定偏壓0.3V下,也可達到約0.20 mA/cm2。
In this study, the influence of Ni2+ concentration doped on the absorbance and photocurrent of the ZnO thin films under different parameters is investigation. The ZnO thin films were prepared by chemical bath deposition (CBD) method, which has several advantages such as : lower cost, low temperature operation, and simple process. Since the undoped-ZnO films have a large energy gap of 3.2eV, they can not absorb the visible light. In order to enhance the absorption of the visible light and promote the photocurrent, Ni2+ ions are doped into ZnO films to add the middle energy gap.
In the experiment, the influence of various kinds of parameter on the properties of undoped-ZnO is investigated to obtain the optimal working parameters. Under this optimal condition, films are doped with Ni2+ ion of 4%, 6%, 8% and 10%, respectively. The properties of the films like morphology, absorbance and photocurrent characteristic are observed and analyzed. For experiment results, it is found that the optimal condition occurs when R is 2.25, pH is 13, the bath deposition temperature is 70℃, the total bath deposition time is 9h within which a 1h deposition is repeated and heat treatment is performed at every 3h, heat treatment temperature is 450℃, and haet treatment time is 2h with increasing and decreasing temperature rate of 3℃/min. The ZnO films doped with 0.01M 8% Ni2+ in above parameters has the best absorbance and photocurrent values. The maximun absorbance can reach 1.2 above, and the maxinum photocurrent value can also reach 0.02 mA/cm2 when the bias potential was 0.3 V.
中文摘要……………………………………….…….…….………...….……….I
Abstract…………………………………………….……………...…..…….…..II
目錄…………………………………...……………….…………..…….….….III
表目錄…………………………………...……………….……….….…….…..VI
圖目錄…………………………………………………….……………….…..VII
符號說明……………………………………………………………………..XIV
第一章 緒論……………………………………………...……….…………….1
1-1 前言………………………………...…………………….…………….1
1-2 太陽光電解水製氫原理……………...………………….…………….3
1-3 氧化鋅光觸媒………………..............……………….………………..5
1-3-1 氧化鋅製備方法……………...………………..………………..5
1-3-2 氧化鋅之薄膜製程…………………………..………………….6
1-4 化學水浴沉積法(Chemical Bath Deposition,CBD)…………………..7
1-4-1 化學水浴沉積法基本化學反應機制…………………………...8
1-4-2 化學水浴沉積法沉積氧化物之化學反應機制……………….10
1-4-3 均質成核與異質成核……………………………..…………...11
1-4-4 薄膜沉積成長與溶解度之關係……………………………….12
1-5 文獻回顧……………………………………………………………...13
1-6 研究動機與目的……………………………………………………...15
第二章 實驗步驟及研究方法………………………………………………...17
2-1 實驗流程與參數設定…………...…………………...……………….17
2-2 實驗材料及儀器……………………………………...………………17
2-2-1 化學藥品……………..………………………...………………17
2-2-2 透明導電基材………..……...………………...……………….19
2-2-3 實驗儀器………..……………………………...……………....19
2-3 化學水浴沉積法製作光電極之實驗步驟...........................................20
2-4光電極之量測………..……………...………………….………….......22
2-4-1 紫外光/可見光(UV/Vis)吸收光譜儀之量測………...………..22
2-4-2 光電流之量測..……………………………………...………....23
2-4-3 X光繞射分析之量測………………………………....…….......23
2-4-4 掃描式電子顯微鏡(SEM)/能量散射光譜儀(EDS)之量測…...24
第三章 實驗結果與討論………..…………………...………………………..25
3-1 不同錯合劑比鋅離子之莫耳比的影響………...……..……...……...26
3-2 不同物理參數對純氧化鋅薄膜形成與吸收度之影響.…….…..…...29
3-2-1 沉積溫度之影響………...…….……………...………………..29
3-2-2 沉積時間之影響………...…….……………...………………..30
3-2-3 pH値之影響………...…….…………………...……....………..31
3-2-4 熱處理溫度之影響…….……………………...…...…………..32
3-3 不同物理參數對摻雜鎳離子氧化鋅薄膜(Ni-doping ZnO)之吸
收度及光電流特性影響……………………....……..................……..32
3-3-1 熱處理溫度之影響……………………………………...…..…32
3-3-2 沉積方式之影響……………………..………………...………33
3-3-3 鎳離子濃度之影響……………………..……………...………34
3-3-4 浴鍍次數之影響……………………………….….…………...36
3-3-5 熱處理升降溫速度之影響…………………….….…………...39
第四章 結論…………………………..……………………………………….40
參考文獻…………………………..……………………………………...……42
表…………………………………..……………………………………...……48
圖…………………………………..……………………………………...……52
[1] 余俊彥,環境、能源與交通管理的新政策與契機,財團法人中技社,
中技社通訊71期,pp.2-6 (2007).
[2] 許寧逸、顏溪成,由碳能朝向氫能的燃料電池,科學發展,367期,pp.8
(2003).
[3] A. Kudo, “Development of photocatalyst materials for water splitting”,
International Journal of Hydrogen Energy, Vol.31, pp.197-202 (2006).
[4] K. Sayama, T. Oi, R. Abe, M. Yanagida, H. Sugihara and Y. Iwasaki,
“Photo-electrochemical properties of oxide semiconductors on porous
titanium metal electrodes, Solar Energy Materials & Solar Cells, Vol.90,
pp.2429-2437 (2006).
[5] V. M. Aroutiounian, V. M. Arakelyan and G. E. Shahnazaryan, “Metal
oxide photoelectrodes for hydrogen generation using solar radiation-driven
water splitting”, Solar Energy, Vol.78, pp.581-592 (2005).
[6] Y. Matsumoto, U. Unal, N. Tanaka, A. Kudob and H. Kato,
“Electrochemical approach to evaluate the mechanism of photocatalytic
water splitting on oxide photocatalysts”, Journal of Solid State Chemistry,
Vol.177, pp.4205-4212 (2004).
[7] D. Raviendra and J. K. Sharma, “Electroless deposition of cadmium
stannate, zinc oxide, and aluminm-doped zinc oxide films”, J. Appl. Phys.,
Vol.58, pp.838-844 (1985).
[8] J. Herrero and C. Guillen, “Improved ITO thin films for photoVoltaic
applications with a thin ZnO layer by sputtering”, Thin Solid Films,
Vol.451-452, pp.630-633 (2004).
[9] S. H. Jeong, J. W. Lee, S. B. Lee and J. H. Boo, “Deposition of
aluminum-doped zinc oxide films by RF magnetron sputtering and study of
their structural, electrical and optical properties”, Thin Solid Films,
Vol.435, pp.78-82 (2003).
[10] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee and J.h. Jeong, “Structural
and electrical properties of sputtered indium-zinc oxide thin films”, Thin
Solid Films, Vol.515, pp.1364-1369 (2006).
[11] J. Herrero and C.Guillen, “Improve ITO thin film for photoVolyaic
applications with a thin ZnO layer by sputtering”, Thin Solid Films,
Vol.451-452, pp.630-633 (2004).
[12] C. Lee, K. Lim and J. Song, “Highly textured ZnO thin films doped with
indium prepared by the pyrosol method”, Solar Energy Materials and Solar
Cells, Vol.43, pp.37-45 (1996).
[13] M. de, L. Olvera, A. Maldonado, R. Asomoza and M. Melendez-Lira,
“Effect of the substrate temperature and acidity of the spray solution on the
physical properties of F-doped ZnO thin films deposited by chemical
spray”, Solar Energy Materials & Solar Cells, Vol.71, pp.61-71 (2002).
[14] D. Raviendra and J. K. Sharma, “Electroless deposition of cadmium
stannate, zinc oxide, and aluminm-doped zinc oxide films”, J. Appl. Phys.,
Vol.58, pp.838-844 (1985).
[15] S. Fujihara, J. Kusakado and T. Kimura, “Fluorine doping in transparent
conductive ZnO thin films by a sol-gel method using trifuoroacetic acid”,
journal of materials science letters, Vol17, pp.781-783 (1998).
[16] L. C. Moreno, J. W. Sandino, N. hernandez and G. gordillo, “pH Effect on
the Deposition of CdS on ZnO and SnO2:F Substrates by CBD Method”,
phys. Stat. Sol., Vol.220, pp.289-292 (2000).
[17] P. O’Brien and J. McAleese, “Developing an understanding of the
processescontrolling the chemical bath deposition of ZnS and CdS”, J.
Mater. Chem, Vol.8, pp.2309-2314 (1998).
[18] P. O''Brien, T. Saeeda and J. Knowled, “Speciation and the nature of ZnO
thin films from chemical bath deposition”, J. Muter. Chem., Vol.6,
pp.1135-1139 (1996).
[19] T. Saeed and P. O’Brien, “Deposition and characterization of ZnO thin
films grown by chemical bath deposition”, Thin Solid Films, Vol.271,
pp.35-38 (1995).
[20] G. Hodes, “Semiconductor and ceramic nanoparticle films deposited by
chemical bath deposition”, Phys. Chem. Chem. Phys., Vol.9, pp.2181-2196
(2007).
[21] H. Y. Xu, H. Wang, T. N. Jin and H. Yan, “Rapid fabrication of luminescent
Eu:YVO4 films by microwave-assisted Chemical solution deposition”,
Institute of Physics Publishing, Nanotechnology, Vol.16, pp.65-69 (2005).
[22] 方俊、王秀峰、程冰、繆凌波,微波輔助化學浴沉積法製備ZnO薄膜,
電子元件與材料,第25卷,第10期,pp.17-19 (2006).
[23] 張振昌,化學水浴沉積法成長硫化鎘薄膜之研究,國立中山大學科學
材料研究所碩士論文(2006).
[24] 敖建平、何青、孫國忠、劉芳芳、黃磊、李薇、李鳳岩、孫雲、薛玉
明,化學水浴沉積CdS薄膜晶相結構及性質,半導體學報,第26卷,
第七期,pp.1347-1351 (2005).
[25] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,國立成功大
學化學工程研究所碩士論文(2006)
[26] 王應名、張萌、徐鵬、劉洋文、李禾、徐飛,化學浴沉積法製備ZnS
薄膜,南昌大學學報,第30卷,第3期,pp.279-282 (2006).
[27] D. O. Eya and Ph.D., “ Influence of thermal annealing on the structural
and optical properties of lead oxide thin films prepared by chemical
bath deposition technique”, The Pacific Journal of Science and
Technology, Vol.7, pp.115-119 (2006).
[28] M. Z. Najdoski and T. Todorovski, “A simple method for chemical bath
deposition of electrochromic tungsten oxide films”, Materials Chemistry
and Physics, Vol.104, pp.483-487 (2007).
[29] T. Todorovski and M. Najdoski, “The solution growth route and
characterization of electrochromic tungsten oxide thin films”, Materials
Research Bulletin, Vol.42, pp.2025-2031 (2007).
[30] T. P. Niesen and M. R. D. Guire, “Review:deposition of ceramic thin films
at low temperatures from aqueous solutions”, Solid State Ionics, Vol.151,
pp.61-68 (2002).
[31] T. P. Niesen and M. R. D. Guire, “Review:Deposition of ceramic thin
films at low temperatures from aqueous solutions”, Journal of
Electroceramics,Vol.6, pp.169-207 (2001).
[32] 王毓國、陳錦山、駱榮富,酸鹼度對化學浴沉積法製備的氧化鋅透明
導電薄膜特性之影響,逢甲大學材料科學與工程學系.
http://ceramic.che.nthu.edu.tw/document/ceramic2007/PP/PP%2026.pdf
[33] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in
aqueous solutions”, J. Mater. Chem., Vol.12, pp.3773-3778 (2002).
[34] P. Mitra and J. Khan, “Chemical deposition of ZnO films from ammonium
zincate bath”, Materials Chemistry and Physics, Vol.98, pp.279-284
(2006).
[35] V. R. Shinde, C. D. Lokhande, R. S. Mane and S. H. Han, “Hydrophobic
and textured ZnO films deposited by chemical bath Deposition:annealingeffect”, Applied Surface Science, Vol.245, pp.407-413 (2005).
[36]S. H. Yi, S. K. Choi, J. M. Jang, J.A. Kim and W. G. Jung,
“Low-temperature growth of ZnO nanorods by chemical bath deposition”,
Journal of Colloid and Interface Science, Vol.313, pp.705-710 (2007).
[37] A. Ennaoui, M. Weber, R. Scheer and H. J. Lewerenz, “Chemical-bath ZnO
buffer layer for CuInS2 thin-film solar cells”, Solar Energy Materials and
Solar Cells, Vol.54, pp.277-286 (1998).
[38]H. Y. Xu, S. L. Xu, X. D. Li, H. Wang and H. Yan, “Chemical bath
deposition of hausmannite Mn3O4 thin films”, Applied Surface Science,
Vol.252, pp.4091-4096 (2006).
[39] M. O. Lopez, A. A. Garcia, M. L. A. Aguilera and V. M. S. Resendiz,
“Improved efficiency of the chemical bath deposition method during
growth of ZnO thin films”, Materials Research Bulletin, Vol.38,
pp.1241-1248 (2003).
[40] Andreas Luzzi, Photoelectrolytic Production of Hydrogen:Final Report of
IEA-HIA:Annex-14, pp.22-24 (2004).
[41]巫文全、王文軒、駱榮富,化學浴沉積法中添加不同錯合物前驅物對
製備硫化鋅薄膜與其性質之影響,逢甲大學材料與科學工程學系.
http://ceramic.che.nthu.edu.tw/document/ceramic2007/PP/PP%2027.pdf
[42] 汪建民,材料分析,中國材料科學學會,民全書局,pp.11-45及pp.121-149
(2005).
[43] S. K. Mandal, A. K. Das and T. K. Nath, “Temperature dependence of
solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO
nanoparticles”, Applied Physics Letters, Vol.89, pp.144105-144107 (2006).
[44] L. Bahadur, T. N. Rao and J. P. Pandey, “Extension of the spectral response of sprayed ZnO thin film electrodes induced by nickel and cobalt doping”,
Semiconductor Science and Technology, Vol.9, pp.275-280 (1994).
[45] A. E. Jimenez-Gonzalez, “Modification of ZnO Thin Films by Ni, Cu, and
Cd Doping”, Journal Of Solid State Chemistry, Vol.128, pp.176-180 (1997).
[46] C. J. Cong, J. H. Hong, Q. Y. Liu, L. Liao and K. L. Zhang, “Synthesis,
structure and ferromagnetic properties of Ni-doped ZnO nanoparticles”,
Solid State Communications, Vol.138, pp.511-515 (2006).
[47] E. Liu, P. Xiao, J. S. Chen, B. C. Lim and L. Li, “Ni doped ZnO thin films
for diluted magnetic semiconductor materials”, Current Applied Physics,
Vol.8, pp.408-411 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔