(34.239.150.57) 您好!臺灣時間:2021/04/14 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江偉岐
研究生(外文):Wei-Chi Chiang
論文名稱:以微製程技術製備鋯鈦酸鉛焦電式微熱量感測器
論文名稱(外文):Microfabrication of PZT pyroelectric sensors for microthermometric applications
指導教授:蔡章仁蔡章仁引用關係
指導教授(外文):Jang-Zern Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:200
中文關鍵詞:鋯鈦酸鉛焦電
外文關鍵詞:pyroelectricPZT
相關次數:
  • 被引用被引用:2
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微製程的方法來製作一紅外線焦電薄膜感測器,焦電薄膜材料選用sol-gel形式的鋯鈦酸鉛(PZT)來製備,並且旋鍍成膜後經700 ℃的高溫退火,使薄膜形成鈣鈦礦之晶格結構,感測晶片由Ni/Cr/PZT/Pt/Ti/SiO2/Si形成三明治結構,以此進行各項焦電特性與感測分析,接下來我們進ㄧ步討論工作面積與工作陣列規格之晶片對於紅外線的感測的影響,並分析出晶片特性的優劣,最後組裝外部硬體電路來穩定輸出訊號,並且使用Labview DAQ介面將系統連結至電腦,進而可直接在電腦上監控感測訊號的變化。
本研究將量測介電常數、介電損失、漏電流密度、焦電係數、電壓感度、電流感度、等效雜訊功率、優值、比感測率等,來分析薄膜品質與晶片感測特性。由實驗結果得知,感測工作面積過大的試片,因薄膜常有過多的缺陷產生,導致短路而失去焦電特性。而相對於較無缺陷影響的試片中,當單位工作面積較小時有較佳之特性,由電壓感度公式下推論後,符合晶片感測度會因工作面積微小化而提高靈敏度。比較相同單位工作面積下之單一感測規格與陣列式感測規格的試片,其各項電性皆以陣列式的試片為佳,由於陣列式晶片將單一工作面積縮小,使得單元下焦電薄膜製備後更加完整,提供各項較佳的特性。比較所有實驗結果得知試片2(250×250 μm2,工作單元規格為2×2,總工作面積為250000 μm2)有最佳化的電特性,其εr=266 F/m、loss tanδ=0.022、γ=29.66 nC/cm2K、RV=134.2 V/W、RI=0.094 μA/W、FV=0.445×10-10Ccm/J、Fm=0.435×10-8Ccm/J、D*=9.81×103 cmHz1/2/W。其輸出訊號再經由電路處理與Labview顯示後,可以很明顯的觀察出輸出訊號在有無感測熱輻射能量的差異性,以得到熱量變化的感測目的。
本研究可提供未來生物放熱實驗的熱量檢測,藉由微製程技術使晶片微小化,進而提升晶片感測的靈敏度,以期望可量測到微量的熱量變化,作為量測生物熱量釋出的溫度計。
In this thesis, we create pyroelectric infrared (IR) sensors of lead zirconate titanate (PZT) by Microfabrication method. The pyroelectric thin films were prepared by a modified Sol-gel method. A 700 ℃ annealing process realized the crystallization of the PZT thin films. The structure of PZT IR sensor was sandwich structure of Ni/Cr/PZT/Pt/Ti/SiO2/Si. When the fabrication of PZT sensors was completed, we examined the relations between characteristics and working area of PZT IR sensors. Subsequently, a circuit was constructed for stabilizing the output signal of the sensor. The output signal could be seen on the computer.
Dielectric constant, dielectric loss, current leakage density, pyroelectric coefficient, voltage responsivity, current responsivity, noise equivalent power, figures of merit and specific detectivity have been measured for analyzing the performance of PZT IR sensors. The sensors with large working areas failed more easily to more impurities and defects. According to the responsivity equation, the sensitivity was raised with the miniaturization of the unit working area. From the results of the experiments, we found that better performances could be obtained with array type design under the situation of total working area.
Our research accomplished the miniaturization of the PZT IR sensor to increase the responsivity sensitivity. We expect this sensor system to be applicable in microthermometric in the future.
中文摘要…………………………………………………………………I
英文摘要…………………………………………………………..……III
致謝………………………………………….………………………….IV
目錄………………………………………….…………………………..V
圖目錄……………………………………….………………………….IX
表目錄………………………...……………….……………………XXIII
第一章 前言……………………………………………………………..1
1-1熱輻射原理…………………………………….……...…………1
1-2紅外線感測器介紹………………………………………………4
1-3 鈣鈦酸鉛材料介紹…………………………..………….……...10
1-4 焦電感測器理論分析…………………………………….…….14
1-4-1 焦電效應……………………………………………....……14
1-4-2 紅外線焦電感測器雜訊來源………………………………19
1-4-3 訊號與雜訊功率之比較……………………………………21
第二章 研究背景…………………………………………………..…..22
2-1 研究動機……………………………………………………..22
2-2 研究目標……………………………………………………..22
第三章 感測器製作………………………………….………………...24
3-1 感測晶片製作………………………………………………….24
3-1-1 感測器結構與光罩設計……………………………………24
3-1-2 感測晶片製作………………………………………………30
3-1-2-1 基板的選擇與處理……………………………………...30
3-1-2-2 下電極之製作………………………………………...…31
3-1-2-3 焦電薄膜PZT之製備…………………………………..31
3-1-2-4 上電極與補強層電極之製作……………………...……33
3-1-3 晶片製作流程圖與製程參數表……………………………35
3-1-3-1 晶片製作流程圖……………………….…………....…..35
3-1-3-2 製程參數表……………………………………………...42
第四章 實驗結果與討論……………………………………………....46
4-1 焦電薄膜分析………………………………………………….46
4-1-1 薄膜表面元素分析…………………………………………46
4-1-2 薄膜表面形貌分析…………………………………………48
4-1-3 薄膜結晶方向分析…………………………………………50
4-2 焦電感測器電性分析………………………………………….54
4-2-1 P-E曲線量測分析…………………………………………..54
4-2-2 電容對電壓量測與介電值之分析…………………………62
4-2-3 漏電流量測分析……………………………………………73
4-2-4 介電損失量測分析…………………………………………78
4-2-5 焦電係數量測分析…………………………………………84
4-3 焦電感測器感測結果分析…………………………………….89
4-3-1 電流響應度分析……………………………………………90
4-3-2 電壓響應度量測分析………………………………………96
4-3-3 電壓-功率量測分析……………………………………….107
4-3-4 輸出電壓與溫度之量測分析…..…………………………109
4-3-5 雜訊等效功率分析………………………………………..112
4-3-6 感測器優值分析…………………………………………..121
4-3-7 比感測率量測分析………………………………………..123
4-4感測電路製作…………………….……………………………132
4-4-1感測器原理…………….…………………………………...132
4-4-2感測電路系統分析…………………………………………134
4-4-2-1積分電路…………………………………………………136
4-4-2-2史密特觸發電路…………………………………………137
4-4-2-3延遲電路…………………………………………………138
4-4-2-4邊緣觸發電路……………………………………………139
4-4-2-5轉類比輸出電路…………………………………………140
4-4-2-6電流轉電壓電路…………………………………………141
4-4-2-7分壓電路………………………………………………….143
4-4-3感測晶片量測結果…………………………………………144
4-4-4感測晶片之電壓-功率量測分析….………………………..146
4-4-5感測晶片之電壓-溫度量測分析…………………………..148
4-5 感測系統分析…………………………………………………151
4-5-1 Labview軟體介紹………………………………………….152
4-5-2 Labview軟體撰寫………………………………………….156
4-5-3 Labview量測結果分析……………………………………158
第五章 結論……………………………………………………….….161
未來展望…………………………………………………………..…..164
參考文獻…………………………………………………………..…..165
[1] D.L. Polla, L. F. Francis, Ferroelectric Thin Films in Micro-electromechanical Systems Applications, MRS BULLETIN, pp. 59-65, 1996.
[2] 龑肇隆編譯, 紅外光, 復興書局, 1971.
[3] 陳家誠, 微機電製程方形複合壓電薄板電極最佳化分布之研究, 國立台灣大學機械工程研究所碩士論文, 1999.
[4] E. Sawaguchi, T. Mitsuma, Z. Ishii, Double Hysteresis Loop of (PbXCa1-X)TiO3 Ceramics, J. Phys. Soc. Japan, Vol. 11, pp. 1298, 1956
[5] D. Brewster, Observation of the Pyroelectric of Minerals, Edinburgh, J. Sci. 1, 1824
[6] 賴耿陽編譯, 紅外線工學基礎應用, 台灣復文興業股份有限公司, 1995
[7] N. S. Gajbhiye, P. S. Venkataramani, Fabrication of PZT Materials from Nanostructured Powders, Progress in Crystal Growth and Characterization of Materials, pp.127-131, 2002.
[8] Y. Z. Chen, J. Ma, L. B. Kong, Seeding in sol-gel process for Pb(Zr0.52Ti0.48)O3 powder fabrication, Materials Chemistry and Physics, Vol. 75, pp. 225-228, 2002.
[9] J. C. Fernandes, D. A. Hall, Phase coexistence in PZT ceramic powders, Nuclear Instruments and Methods in Physics Research B, Vol. 97, pp. 137-141, 1995.
[10] 周嘉峰, 雷射退火低溫製備鈦鋯酸鉛薄膜之研究, 國立台灣科技大學碩士論文, 2001.
[11] D. Kim, T. Y. Kim, Microstructure control in MOCVD PZT thiin films, Materials Research Society Symposium-Proceeding, Vol. 433, pp. 213-224, 1996.
[12] H. Kanai, Y. Yamashita, Investigation of Factors Affecting Electrical Properties of PZT Thin Film Capacitors, International Symposium on Applications of ferroelectrics, pp. 121-124, 1998
[13] H.Fujisaawa, M.Yoshida, Influence of the Purity of Source Precursors on the Electrical Properties of Pb(Zr, Ti)O3 Thin Dilms Prepared by Metalorganic Chemical Vapor Deposition, Japness Journal of Applied Physics, Vol. 37, pp. 5132-5136, 1998.
[14] S. Y. Chen, Texture evolution and electrical properties of oriented PZT thin films, Materials Chemistry and Physics, Vol. 45, pp. 159-162, 1996.
[15] 施敏著, 張俊彥譯, 半導體元件之物理與技術, 儒林圖書有限公司
[16] T. Mitsui, I. Tatsuzaki, An Introduction to Physics of Ferroelectric, GORDOR AND BREACH SCIENCE PUBLISHERS, pp. 2.
[17] Y. P. Xu, R. S. Huang, A silicon-diode-based infrared thermal detector array , Sensors and Actuators A, Vol. 37, pp. 226, 1993.
[18] 李易儒, 以溶膠-凝膠法及快速熱處理技術製備鉭酸鋰焦電薄膜紅外線感測器之研究, 國立中山大學電機研究所碩士論文, 2002.
[19] S. T. Liu, D. Long, Pyroelectric Detectors and Materials, Proceedings of IEEE, Vol. 66, No. 1, Jan. 1978.
[20] S. G. Porter, A Brief Guide to Pyroelectric Detectors, Ferroelectric 33, pp. 193-206, 1981.
[21] W. L. Warren, D. Dimos, Links between electrical and fatigue in Pb(Zr, Ti)O3 thin films, J. Am. Ceram. Soc., Vol. 79, pp. 1714-1716, 1996.
[22] R. Vaidya, R. J. Simonson, Formation and Stability of Self-Assembled Monolayers on Thin Films of Lead Zirconate Titanate (PZT), Langmuir, Vol. 12, pp. 2830-2836, 1996.
[23] L. L. Sun, O. K. Tan, W. G. Liu , X. F. Chen, W. Zhu, Comparison study on sol–gel Pb(Zr0.3Ti0.7)O3 and Pb(Zr0.3Ti0.7)O3/PbTiO3 multilayer thin films for pyroelectric infrared detectors, Microelectronic Engineering, Vol. 66, pp. 738–744, 2003.
[24] X. J. Meng, J. G. Cheng, J. L. Sun, J. Tan, H. J. Ye, Dependence of texture development on thickness of single-annealed-layer in sol-gel derived PZT thin films, Thin Solid Films, Vol. 368, pp. 22-25, 2000.
[25] D. H. Kanga, K. W. Kima, S. Y. Leea, Young Ho Kima, Sang Keun Gilb, Influencing factors on the pyroelectric properties of Pb(Zr,Ti)O3 thin film for uncooled infrared detector, Materials Chemistry and Physics, Vol. 90, pp. 411–416, 2005.
[26] Y. Xu, Ferroelectric Materials and Their Applications, North Holland, New York, 1991.
[27] P. K. Sekhar, S. Akella, S. Bhansali, A low loss flexural plate wave (FPW) device through enhanced properties of sol–gel PZT (52/48) thin film and stable TiN-Pt bottom electrode, Sensors and Actuators A, Vol. 132, pp. 376–384, 2006.
[28] M. Deshpande, L. Saggere, PZT thin films for low voltage actuation: Fabrication and characterization of the transverse piezoelectric coefficient, Sensors and Actuators A, 2006.
[29] Q. Q. Zhang , S. J. Gross , S. Tadigadapa , Lead zirconate titanate films for d33 mode cantilever actuators, Sensors and Actuators A, Vol. 105, pp. 91–97, 2003.
[30] A. Wu, P. M. Vilarinho, Characterization of Seeded Sol-Gel Lead Zirconate Titanate Thin Films, Journal of the European Ceramic Society, Vol. 19, pp. 1403-1407, 1999.
[31] P. Khaenamkaewa, S. Muensit, I. K. Bdikin, A. L. Kholkin, Effect of Zr/Ti ratio on the microstructure and ferroelectric properties of lead zirconate titanate thin films, Materials Chemistry and Physics, 2007.
[32] D. H. Li, E. S. Lee, Comparison of the effect of PLT and PZT buffer layers on PZT thin films for ferroelectric materials applications, Applied Surface Science, Vol.252, pp. 4541–4544, 2006.
[33]葉宇寰, 以溶膠-凝膠法及不同熱處理技術製備鉭酸鋰焦電薄膜紅外線感測元件之研究, 國立中山大學電機系碩士論文, 2004.
[34] Y. Wang , Y. L. Cheng, Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes, Materials Science and Engineering B, Vol. 99, pp. 79–82, 2003.
[35] C. M. Huang, S. F. Wang, Microstructures and dielectric properties of PZT thick films prepared by aerosol plasma deposition with microwave annealing, Materials Science and Engineering B, Vol. 133, pp. 181–185, 2006.
[36] T. M. Kamel, F. X. N. M. Kools, Poling of soft piezoceramic PZT, Journal of the European Ceramic Society, Vol. 27, pp. 2471–2479, 2007.
[37] T. J. Zhu, L. Lu, M. O. Lai, Growth and electrical properties of highly (0 0 1)-oriented Pb(Zr0.52Ti0.48)O3 thin films on amorphous TiN buffered Si(1 0 0), Sensors and Actuators A, Vol. 125, pp. 335–339, 2006.
[38] P. Juan, Y. Hu, The electrical properties of Metal–Ferroelectric (PbZr0.53Ti0.47O3)–Insulator–Silicon (MFIS) capacitors with different insulator materials, Microelectronic Engineering, Vol. 80, pp. 309–312, 2005.
[39] N. Seong, K. Choi, Thickness effect of Pb2Ru2O7 conductive interfacial layers on ferroelectric properties of Pt/Pb(Zr0.35Ti0.65)O3/Pt capacitors, Thin Solid Films, Vol. 468, pp. 100– 104, 2004.
[40] Y. K. Fetisov, A. A. Bush, Pyroelectric effects in magnetoelectric multilayer composites, Solid State Communications, Vol. 132, pp. 319–324, 2004.
[41] A. K. Tripathi, T. C. Goel, Preparation of 4:55:45 samarium doped PZT films by sol-gel technique and their characterization, Materials Science and Engineering B, Vol. 96, pp. 19-23, 2002.
[42] W. K. Sakamoto, P. Marin-Franch, Characterization and application of PZT/PU and graphite doped PZT/PU composite, Sensors and Actuators A, Vol. 100, pp. 165–174, 2002.
[43] W. Liu, J. S. Ko, W. Zhu, Preparation and properties of multilayer Pb Zr,TiO3 rPbTiO3 thin films for pyroelectric application, Thin Solid Films, Vol. 371, pp.254-258, 2000.
[44] M. Kohli, C. Wuethrich, Pyroelectric thin-film sensor array, Sensors and Actuators A, Vol. 60, pp. 147-153, 1997.
[45] S. Y. Kwon, J. Bae, Fabrication and Characteristics of 0-3 PbTiO3 /P(VDF/TrFE)Nanocomposites Thin Films for Pyroelectric Infrared Sensor, IEEE, pp.4910-4912, 2006.
[46] B. Willing, M. Kohli, Thin film pyroelectric array as a detector for an infrared gas spectromter, Infrared Physics & Technology, Vol. 39, pp. 443-449, 1998.
[47] C. S. Wei, Y. Y. Lin, Y. C. Hu, Partial-electroded ZnO pyroelectric sensors for responsivity improvement, Sensors and Actuators A, Vol. 128, pp. 18–24, 2006.
[48] N. Chong, H. L. W. Chan, C. L. Choy, Pyroelectric sensor array for in-line monitoring of infrared laser, Sensors and Actuators A, Vol. 96, pp. 231-238, 2002.
[49] J. Huang, J. Lian, Pyroelectric Properties of PZT(90/10) Thin Films on Pt/Si Substrates, IEEE, Vol. 2, pp. 623-626, 1996.
[50] SR830 datasheet
[51] 惠汝生, “Labview 8.X圖控程式應用” 全華科技圖書, p23~p44.
[52] J. G. Cheng, J. L. Sun, Dependence of texture development on thickness of single-annealed-layer in sol-gel derived PZT thin films, Thin Solid Films, Vol. 368, pp. 22-25, 2000.
[53] W. Liu , L. L. Sun, Noise and specific detectivity of pyroelectric detectors using lead titanate zirconate (PZT) thin films, Microelectronic Engineering, Vol. 66, pp. 785–791, 2003.
[54] S. Gebhardta, L. Seffnera, Bi-layered PZT films by combining thick and thin film technology, Journal of the European Ceramic Society, Vol. 24, pp. 1101–1105, 2004.
[55] C.P. Shaw, S. Gupta, Pyroelectric properties of Mn-doped lead zirconate–lead titanate–lead magnesium niobate ceramics, Journal of the European Ceramic Society, Vol. 22, pp. 2123–2132, 2002.
[56] A. Shaw, C. P., Alcock, A Taguchi study of defects in the fabrication of P. Z. T. Ceramics. In Workshop Proceedings of Ferroelectrics 2000 UK (IOM Cummunications), pp. 29–36, 2000.
[57] V. N. Leonov, D. P. Butler, Dielectric loss and related noise of pyroelectric modified lead titannate arrays, Solid-State Electronics, Vol. 45, pp. 735-741, 2001.
[58] P. C. Juan, Y. P. Hu, The electrical properties of Metal–Ferroelectric
(PbZr0.53Ti0.47O3)–Insulator–Silicon (MFIS) capacitors with different insulator materials, Microelectronic Engineering, Vol. 80, pp. 309–312, 2005.
[59] D. H. Kang, K. W. Kim, Influencing factors on the pyroelectric properties of Pb(Zr,Ti)O3 thin film for uncooled infrared detector, Materials Chemistry and Physics, Vol. 90, pp. 411–416, 2005.
[60] A. Ignatiev, Y. Q. Xu, N. J. Wu, D. Liu, Pyroelectric, ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors, Materials Science and Engineering B, Vol. 56, pp. 191–194, 1998.
[61] C. Buchanan, J. Huang, Pyroelectric and Sensor Properties of Ferroelectric Thin Films for Energy Conversion, Journal of the European Ceramic Society, vol. 19, pp. 1467-1471, 1999.
[62] L. Jinhua, Y. Ningyi, H. L. W. Chan, Preparation of PCLT/P(VDF-TrFE) pyroelectric sensor based on plastic film substrate, Sensors and Actuators A, Vol. 100, pp. 231–235, 2002.
[63] M. Es-Souni, S. Iakovlev, C. H. Solterbeck, Multilayer ferroelectric thin films for pyroelectric applications, Sensors and Actuators A, Vol. 109, pp. 114–119, 2003.
[64] R.W. Whatmore, Q. Zhang, Ferroelectric thin and thick films for Microsystems, Materials Science in Semiconductor Processing, Vol. 5, pp. 65–76, 2003.
[65] N. M. Shorrocks, A. Patel, M. J. Walker, A. D. Parsons, INTEGRATED THIN FILM PZT PYROELECTRIC DETECTOR ARRAYS, Microelectronic Engineering, Vol.29, pp. 59-66, 1995.
[66] Q. Q. Zhang, H. L.W. Chan, C. L. Choy, Integrated pyroelectric array based on PCLTrP(VDF-TrFE) composite, Sensors and Actuators, Vol. 86, pp. 216–219, 2000.
[67] D. H. Li, E. S. Lee, Comparison of the effect of PLT and PZT buffer layers on PZT thin films for ferroelectric materials applications, Applied Surface Science, Vol. 252, pp. 4541–4544, 2006.
[68] K. Kakegawa, S. S. Suzuki, Design of pyroelectric properties by controlling compositional distribution, Journal of the European Ceramic Society, Vol. 26, pp. 613–617, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔