(3.227.235.183) 您好!臺灣時間:2021/04/20 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇芳瑩
研究生(外文):Fang-Ying Su
論文名稱:改良式脈衝縮減元件用於時脈抖動量測
論文名稱(外文):An Improved Pulse Shrinking Delay Element for Clock Jitter Measurement
指導教授:鄭國興鄭國興引用關係
指導教授(外文):Kuo-Hsing Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:電壓補償製程補償抖動量測脈衝縮減
外文關鍵詞:process compensationvoltage compensationjitter measurementpulse shrinking
相關次數:
  • 被引用被引用:1
  • 點閱點閱:306
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體製程不斷進步,超大型積體電路的晶片整合系統(System-on-Chip, SOC)已成趨勢。當系統整合於同一晶片中,系統同步時脈訊號更顯重要,鎖相迴路(Phase-Locked Loop, PLL)或延遲鎖定迴路(Delay-Locked Loop, DLL)是常用的時脈產生器,然而時脈抖動對於鎖相迴路以及延遲鎖定迴路而言是重要的參數。過去時脈抖動多由外部儀器量測,但由於鎖相迴路的操作頻率不斷提高,欲達到較高量測效能,將會相對的提高外部儀器成本,再加上外部儀器的探針會引入雜訊,影響量測結果,因此內建時脈抖動量測電路較適用於PLLs量測。
本論文提出之時脈抖動量測電路為改良式脈衝縮減延遲電路,而傳統的電路「具高解析度之循環式時間至數位轉換器」[1]是以不同尺寸比例的反相器達到脈衝縮減,而本論文將原本單一路徑之縮減元件改為雙路徑,以的上升下降時間的不匹配達到相同的脈衝縮減效果。然而為了使量測電路之解析度更加精確,於是在脈衝縮減元件加上兩組補償電路,分別為電壓抖動補償電路與製程偏移補償電路。
本論文以CMOS 0.18um 1P6M製程來實現,電路的工作電壓為1.8V。電路操作頻率1GHz,電路解析度為5ps,消耗功率為1.7mW。含I/O pad的晶片總面積為753um × 592um,核心電路部份面積為108um × 59um。
As the improvement of semiconductor technology, the current trend of VLSI circuit is System-on-Chip (SOC). When many systems were integrated into a chip, the system synchronization clock signal must be accurate. We usually choose Phase-Locked Loop (PLL) or Delay-Locked Loop (DLL) as the reference clock generator. However, the jitter characteristic of the PLLs or DLLs is the most important parameter. In the past, the jitter was measured by the external equipment. But, with the increased operating frequency, it has a higher cost on jitter measuring by external equipments. Moreover, sometimes probes of external equipments will induce noise, then the measurement result is disturbed. In view the problem, the built-in jitter measurement circuit is adapted to the PLLs.
In this thesis, an improved pulse shrinking delay element for clock jitter measurement is proposed. The traditional cyclic CMOS time-to-digital converter circuit [1] was changed the size of inverters to complete pulse shrink. We use two path with differential rising time and falling time to achieve pulse shrink. In order to make the measurable circuit have high accuracy, the compensated circuit is added to compensate the voltage and process variation.
The proposed circuit is designed in CMOS 0.18um 1P6M process. The operation voltage is 1.8V in the circuit. The reference frequency is 1GHz and the resolution of measurement circuit is 5ps. The power consumption is 1.7mW
at 1GHz. Area with I/O pad in the chip is 753um × 592um, and the area of core circuit is 108um × 59um.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 時脈抖動定義 3
2.1 時脈抖動定義 3
2.2 時脈抖動分佈圖(Jitter Histogram) 4
2.3 時脈抖動類別 6
2.3.1 相對週期時脈抖動(Cycle-to-Cycle Jitter) 6
2.3.2 週期時脈抖動(Period Jitter) 6
2.3.3 長期的時脈抖動(Long-Term Jitter) 7
第三章 時脈抖動量測方法介紹 9
3.1 傳統Off-Chip時脈抖動量測方法 9
3.2 On-Chip時脈抖動量測方法 10
3.3 On-Chip時脈抖動量測相關研究 11
3.3.1 時間數位轉換器(Time-to-Digital Converter) 11
3.3.2 延遲串列式量測法(Delay Chain Method) 12
3.3.3 游標尺延遲線量測法(Vernier Delay Line Method) 14
3.3.4 改良式游標尺延遲線量測法 15
3.3.5 游標尺振盪器量測法(Vernier Ring Oscillator Method)16
3.3.6 DLL內插式量測法 (DLL Interpolation Method) 17
3.3.7 時間放大器量測法(Time Amplifier Method) 19
3.3.8 脈衝縮減量測法(Pulse Shrinking Method) 20
3.3.9 時脈抖動量測方法比較 21
第四章 改良式脈衝縮減元件之內建自我測試電路 22
4.1 基本動作原理說明 22
4.2 脈衝縮減原理 24
4.2.1 上升時間與下降時間推演 24
4.2.2 傳統脈衝縮減元件 25
4.2.3 改良式脈衝縮減元件 27
4.3 改良式脈衝縮減電路之補償電路 29
4.3.1 電壓抖動補償電路(Voltage Compensated Circuit) 30
4.3.2 製程變異補償電路(Process Compensated Circuit) 31
4.4 改良式脈衝縮減電路之計數器電路 32
4.5 系統校正與量測 34
4.5.1 量測前之系統校正 34
4.5.2 實際量測操作 36
4.6 改良式脈衝縮減電路之總電路架構 36
第五章 晶片實現與模擬 38
5.1 設計流程介紹 38
5.2 脈衝縮減電路之延遲線模擬 39
5.2.1 以反相器組成之延遲線 39
5.2.2 以NAND閘組成之延遲線 41
5.3 傳統循環式脈衝縮減電路 42
5.3.1 以反相器組成之延遲線電路 42
5.3.2 以NAND閘組成之延遲線電路 44
5.4 改良式循環脈衝縮減電路 46
5.4.1 電壓抖動補償 47
5.4.2 製程變異抖動補償 50
5.5 計數器電路 52
5.6 解析度與精確度 53
5.6.1 解析度模擬分析 53
5.6.2 精確度模擬分析 54
5.6.3 抖動訊號分佈 55
5.7 電路規格與比較表 56
5.8 全電路佈局 57
5.9 量測考量 58
第六章 結論 60
6.1 結論 60
6.2 未來改進的方向 60
參考文獻 62
[1] Poki Chen, and Shen-Iuan Liu, “A Cyclic CMOS Time-to Digital Converter with Deep Sub-Nanosecond Resolution,”IEEE Custom Integrated Circuits Conference, pp. 605-608, May 1999.

[2] F. Azais, M. Renovell, Y. Bertrand, A. Ivanova, and S. Tabatabaei, “A Unified Digital Test Technique for PLLs: Catastrophic Faults Covered,” Proc. of Int. Mixed Signal Testing Workshop, pp. 269-292, June 1999.

[3] K.A. Taylor, B. Nelson, A. Chong, H Lin, E. Chan, M. Soma, H. Haggag, J. Huard, J. Braatz, “Special Issue on BIT CMOS Built-In Test Architecture for High-Speed Jitter Measurement,” IEEE Trans. on Instrumentation and Measurement, vol.54, no.3, pp. 975-987, June 2005.

[4] C.C. Tsai, ”On-Chip Jitter Measurement for Phase Locked Loop,” MS. Thesis, National Chiao Tung University, Institute of Electronics Engineering, Taiwan, 2002.

[5] Antonio H. Chan and Gordon W. Roberts, “A Jitter Characterization System Using a Component-Invariant Vernier Delay Line,” IEEE Transactions on VLSI Systems, vol.12, pp. 79-95, Jan. 2004.

[6] Bozena Kaminska, “BIST Means More Measurement Options for Designers,” EDN Magazine, Dec. 2000.

[7] Tian Xia, Jien-Chung Lo, “Time-to-Voltage Converter for On-Chip Jitter Measurement,” IEEE Trans. on Instrumentation and Measurement, pp. 1738-1748, Dec. 2003.

[8] A. H. Chan and G.W. Roberts, “A Synthesizable, Fast and High-Resolution Timing Measurement Device Using a Component-Invariant Vernier Delay line,” Proc. of Int. Test Conf., pp. 858-867, Nov 2001.

[9] P.Dudek, S. Szczepanski, J. Hatfield, ” A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE J. Solid-State Circuits, vol.35, pp. 240-247, Feb. 2000.

[10] A. H. Chan and G.W. Roberts “A Deep Sub-Micron Timing Measurement Circuit Using a Single-Stage Vernier Delay Line,” Proc. IEEE CICC, pp. 77-80, May 2002.

[11] M.A. Abas, G. Russell, and D.J. Kinniment, “Design of Sub-10-Picoseconds On-Chip Time Measurement Circuit,” Design, Automation and Test in Europe Conference and Exhibition, vol.2, pp. 804-809, Feb. 2004.

[12] Poki Chen, and Shen-Iuan Liu, Jingshown Wu, “A Low Power High Accuracy CMOS Time-to-Digital Converter,” IEEE Proceeding of ISCAS, pp. 281-284, 1997.


[13] P.Chen, Shen-Luan Liu, Jingshown Wu, “A CMOS Pulse-Shrinking Delay Element for Time Interval Measurement,” IEEE J. Solid-State Circuits , vol.47, pp. 954-958, Sept. 2000.

[14] M. Mansuri, C.K. Yang, “A Low-Power Adaptive Bandwidth PLL and Clock Buffer with Supply-Noise Compensation,” IEEE J. Solid-State Circuits, vol.38, pp. 1804-1812, Nov. 2003.

[15] Poki Chen “The Design and Realization of Highly Accurate CMOS Time-to-Digital Converters,” pp. 37-39.

[16] Kuo-Hsing Cheng, Chan-Wei Huang, Shu-Yu Jiang, “Self-Sampled Vernier Delay Line for Built-In Clock Jitter Measurement,” IEEE International Symposium on Circuits and Systems, ISCAS, pp.1591-1594 , May 2006.

[17] Tian Xia, Hao Zheng, Jing Li, Ginawi, A. ,“Self-Refereed On-Chip Jitter Measurement Circuit Using Vernier Oscillators,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.218-223, May 2005.

[18] J.P. Jansson, A. Mantyniemi, J. Kostamovaara, “A CMOS Time-to-Digital Converter with Better Than 10 ps Single-Shot Precision,” IEEE Journal of Solid-State Circuits, vol.41, pp.1286-1296, June 2006.

[19] M.A. Abas, G. Russell, D.J. Kinniment, “Embedded High-Resolution Delay Measurement System Using Time Amplification”, Computers & Digital Techniques, IET, vol.1, pp. 77-86, March 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔