(3.238.240.197) 您好!臺灣時間:2021/04/12 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳曉晴
研究生(外文):Hsiao-ching Chen
論文名稱:改良式游標尺環形振盪器時脈抖動量測電路
論文名稱(外文):An Improved Vernier Ring Oscillator for Clock Jitter Measurement
指導教授:鄭國興鄭國興引用關係
指導教授(外文):Kuo-hsing Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:63
中文關鍵詞:抖動量測製程變異補償游標尺
外文關鍵詞:jitter measurementprocess variation compensationvernier
相關次數:
  • 被引用被引用:4
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體製程的進步,超大型積體電路(Very-Large-Scale-Integrated, VLSI)已經朝向高速、系統晶片整合(System-On-Chip, SOC)的方向發展,各電路間的時脈關係更顯的重要。在系統晶片中,時脈同步電路的時脈抖動量是整個電路效能的重要指標之ㄧ,因此能否正確量測時脈的抖動是非常重要的議題[1]。而鎖相迴路(Phase-Locked Loop, PLL)或延遲鎖定迴路(Delay-Locked Loop, DLL)通常會被用來當作系統的時脈同步元件,但由於系統的時脈同步元件之操作頻率上升,也因此需要更精密的量測儀器,進而提高了測試成本。且經由外部儀器進行量測,則外部雜訊亦容易干擾量測結果,因此內建自我測試電路(Build-In Self Test, BIST)漸形發展。使用BIST電路量測時脈抖動可以減少測試成本、雜訊的影響,且提升量測的速度。
本論文使用的內建時脈抖動自我測試電路,主要架構分為:正緣準位偵測器、環形振盪器、相位偵測器、計數器。利用游標尺的相對量測方式,使用兩組環形振盪器來量測時脈抖動量,因此可以達到固定且較高的解析度,並可以減少晶片面積。在振盪器的延遲元件中,利用金氧半場效電晶體形式的電容(MOS Capacitor)作為延遲控制,當製程變異時,可經由改變振盪週期來達到微調解析度的目的,因此,不管製程變異的情況如何,皆能得到相近值的解析度。
此電路設計經由HSPICE模擬分析,並以CMOS 0.18um 1P6M製程來實現,電路的工作電壓為1.8V,可應用於1.25GHz的時脈訊號之抖動量測,其抖動量測之解析度為5ps,消耗功率為3.1mW。含I/O pad的晶片總面積為1090um × 686um,核心電路部份面積為171um × 71um。
As the improvement of semiconductor technology, the Very-Large-Scale Integrated (VLSI) circuit has moved towards the development of high-speed and System-On-Chip (SOC) applications. Hence, improving timing relationship and synchronization problem among circuits is more important. In a SOC system, jitter is the most important effect in a clock synchronization circuit. Therefore, it is very important topic that how to correctly measure the clock jitter[1]. Phase-Locked Loop (PLL) or Delay-Locked Loop (DLL) is usually used as the synchronous component. With the increased operating frequency, it has higher cost on jitter measurement by external equipment. To utilize the external equipment to measure the clock jitter, the probes of external equipments will induce noise and the measurement result will be different. In view the problem, the Build-In Self Test (BIST) design was developed gradually. Using the BIST measurement circuits to measure the clock jitter can reduce testing cost, decrease the effect of external noise, and speed up the jitter measurement.
In this thesis, the BIST jitter measurement circuit is composed of Edge Detector, Ring Oscillator, Phase Detector, and Counter. Employing the idea of vernier by using two sets of ring-oscillator to measure the timing jitter, as a result, fixed and higher resolution can be reached and chip area is also reduced. By using the MOS capacitor into the delay element of the oscillator, we can change the switch of the MOS capacitor to get a fixed resolution that we want, no matter how process variation changes.
This circuit was simulated by HSPICE and implemented in a CMOS 0.18um 1P6M process with 1.8V supply voltage. The power consumption is 3.1mW and the jitter measurement resolution is 5ps at 1.25GHz input clock application. The chip area is 1090um × 686um and core area is 171um × 71um.
摘要 I
Abstract II
目錄 IV
圖目錄 I
表目錄 III
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 時脈抖動的定義 3
2.1 時脈抖動的定義 3
2.2 時脈抖動的類別 4
2.2.1 相對週期時脈抖動 4
2.2.2 週期時脈抖動 5
2.2.3 長期的時脈抖動 6
2.3 時脈抖動分佈圖 7
第三章 時脈抖動量測方法 10
3.1 Off-Chip時脈抖動量測方式 10
3.2 On-Chip時脈抖動量測特性 11
3.3 On-Chip時脈抖動量測相關研究 12
3.3.1 類比式時間數位轉換器 13
3.3.2 延遲串列方法 14
3.3.3 游標尺延遲線方法 17
3.3.4 改良式游標尺延遲線方法 19
3.3.5 游標尺環形振盪器方法 20
3.3.6 DLL內插式量測法 22
3.3.7 時間放大器量測法 23
3.3.8 數位時脈抖動量測方法之比較 25
第四章 改良式游標尺環形振盪器時脈抖動量測電路 26
4.1 改良式內建時脈抖動量測電路架構圖 26
4.2 改良式游標尺環形振盪器電路實現 28
4.2.1 正緣準位偵測器 29
4.2.2 環形振盪器 31
4.2.2.1 電壓控制延遲元件 32
4.2.2.2 具製程變異解析度補償元件之游標尺環形振盪器 34
4.2.3 相位偵測器 35
4.2.4 計數器 36
4.3 自我校正模式及量測模式 38
第五章 晶片實現與模擬 43
5.1 設計流程介紹 43
5.2 電路模擬結果 44
5.2.1 正緣準位偵測器 44
5.2.2 環形振盪器 45
5.2.3 相位偵測器 46
5.2.4 計數器 47
5.2.5 自我校正模式模擬 47
5.2.6 抖動訊號分佈 54
5.3 電路規格與比較 55
5.4 全電路佈局 56
5.5 量測考量 58
第六章 結論 59
6.1 結論 59
6.2 未來改進方向 59
參考文獻 61
[1]M. M. Gourary, et al., “A new approach for computation of timing jitter in phase locked loops,” Proc. of Design, Automation and Test in Europe and Exhibition 2000, pp. 345-349, Mar. 2000.

[2]T. Okayasu, M. Suda, and K. Yamamoto, “CMOS Circuit Technology for Precise GHz Timing Generator,” Proc. of Int. Test Conf., pp. 894-902, Oct. 2002.

[3]C.-C. Tsai, “On-Chip Jitter Measurement for Phase-Locked Loop,” MS. Thesis, National Chiao Tung University, Institute of Electronics Engineering, Taiwan, 2002.

[4]K. A. Taylor, B. Nelson, A. Chong, H. Lin, E. Chan and M. Soma, “Special Issue on BIT CMOS Built-In Test Architecture for High-Speed Jitter Measurement,” IEEE Trans. on Instrumentation and Measurement, vol. 54, no. 3, pp. 975-987, Jun. 2005.

[5] N. Soo, “Jitter Measurement Techniques,” Pericom Application Brief AB36,
Nov. 2000.

[6]A. H. Chan and G. W. Roberts, “A Jitter Characterization System Using a Component-Invariant Vernier Delay Line,” IEEE Trans. on VLSI Systems, vol. 12, pp. 79-95, Jan. 2004.

[7]B. Kaminska, “BIST Means More Measurement Options for Designers,” EDN Magazine, Dec. 2000.

[8]K.-H. Cheng, S.-M. Chung, Y.-L. Lo and S.-Y. Jiang, “A 2.2 GHz Programmable DLL-Based Frequency Multiplier for SOC Applications,” Proc. of IEEE Asia-Pacific Conf.on Advanced System Integrated Circuits, pp. 72- 75, Aug. 2004.

[9]T. Xia and J.C. Lo, “Time-to-Voltage Converter for On-Chip Jitter Measurement,” IEEE Trans. on Instrumentation and Measurement, vol. 52, pp. 1738-1748, Dec. 2003.

[10] S. Sunter and A. Roy, “BIST for Phase-Locked Loops in Digital Applications,” Proc. of Int. Test Conf., pp. 532-540, Sep. 1999.

[11]A. H. Chan and G.W. Roberts, “A Deep Sub-Micron Timing Measurement Circuit Using a Single-Stage Vernier Delay Line,” Proc. of IEEE Custom Integrated Circuits Conf., pp. 77-80, May 2002.

[12] J. Christiansen, “An Integrated CMOS 0.15 ns Digital Timing Generator for TDC’s and Clock Distribution Systems,” IEEE Trans. on Nuclear Science, vol. 42, no. 4, pp. 753-757, Aug. 1995.

[13] Y. Arai and T. Ohsugi, “TMC-a CMOS Time to Digital Converter VLSI,” IEEE Trans. on Nuclear Science, vol. 36, no. 1, pp. 528-531, Feb. 1989.

[14] P. Dudek, S. Szczepanski and J. Hatfield, ” A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE J. Solid-State Circuits, vol. 35, pp. 240-247, Feb. 2000.

[15] K.-H. Cheng, C.-W. Huang, S.-Y. Jiang, “Self-Sampled Vernier Delay Line for Built-In Clock Jitter Measurement,” Proc. of IEEE International Symposium on Circuits and Systems, pp. 1591-1594 , May 2006.

[16] T. Xia, H. Zheng, J. Li and A. Ginawi, “Self-Refereed On-Chip Jitter Measurement Circuit Using Vernier Oscillators,” Proc. of IEEE Computer Society Annual Symposium on VLSI, pp. 218-223, May 2005.

[17] J. P. Jansson, A. Mantyniemi and J. Kostamovaara, “A CMOS Time-to-Digital Converter with Better Than 10 ps Single-Shot Precision,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1286-1296, Jun. 2006.

[18] M.A. Abas, G. Russell and D.J. Kinniment, “Embedded High-Resolution Delay Measurement System Using Time Amplification”, IET Computers & Digital Techniques, vol. 1, no. 2, pp. 77-86, Mar. 2007.

[19] C. Ljuslin, J. Christiansen, A. Marchioro, and O. Klingsheim, “An integrated 16-channel CMOS time to digital converter,” IEEE Trans. on Nuclear Science, vol. 41, no. 4, pp. 1104–1108, Aug. 1994.

[20] M. Mansuri and C. K. Yang, “A Low-Power Adaptive Bandwidth PLL and Clock Buffer With Supply-Noise Compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1804-1812, Nov. 2003.

[21] P. Chen, C.-C. Chen, C.-C. Tsai, and W.-F. Lu, "A time-to-digital- converter-based CMOS smart temperature sensor," IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642–1648, Aug. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔