跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉豪
研究生(外文):Jia-hao Wang
論文名稱:單電子電晶體耦合量子點的負微分電導效應
論文名稱(外文):Negative differential conductance effect of the parallel coupled Quantum Dots
指導教授:郭明庭
指導教授(外文):Ming-ting Kuo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:48
中文關鍵詞:單電子電晶體穿隧電流
外文關鍵詞:single electron transistorstunneling current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文是利用格林函數,系統化的探討單電子電晶體的穿隧電流頻譜。首先在一階系統裡,分析了內階庫倫交互作用力所造成的影響;由於庫倫阻斷效應,使穿隧電流呈現出庫倫階梯以及庫倫震盪的現象。我們還分析了穿隧率改變對電流頻譜所造成的影響,穿隧率的改變會影響電流頻譜上各個通道的強弱。在二階系統裡,由於能階之間會互相影響,所以加入了外階庫倫交互作用力這項參數;二階系統的電流頻譜,會受到內階庫倫交互作用力與外階庫倫作用力的共同作用。在經過一連串的分析之後,我們整理出了影響能階裡各個通道強弱的因素。而最後探討了在雙量子點系統裡,負微分電導的成因,發現到負微分電導的產生,和量子點左右穿隧率的比例息息相關,只有當量子點B為殼層填充時,才觀察的到負微分電導。
  Tunneling current of single-electron transistor is systematically investigated by using the Keldysh Green function method in this thesis. For one energy level case, the Coulomb staircase and Coulomb oscillation of tunneling current with respect to the applied bias and gate voltage arise from intralevel electron Coulomb interaction. We also found that tunneling rate ratio significantly influences the tunneling current spectrum. For two energy level case, the interlevel Coulomb interactions as well as intralevel Coulomb interactions exist remarkable effect on the tunneling current. Finally, we study the tunneling current through paralleled two quantum dot system. The tunneling current shows the negative differential conductance (NDC) behavior resulting from the interdot Coulomb interactions. Such a NDC effect exists in the quantum dot with shell-filling condition.
摘要.................................................. I
Abstract..............................................II
致謝.................................................III
目錄..................................................IV
圖目錄................................................VI
表目錄..............................................VIII
第一章 導論……………………………………………..………….1
第二章 穿隧電流……………………………………………..…….3
  2-1 系統模型.........................................................3
  2-2 推遲格林函數的一般式.............................................6
  2-3 偏壓對量子點裸能階的修正.........................................8
第三章 一階系統.......................................9
  3-1 一階系統格林函數.................................................9
  3-2 一階系統的電子佔據率與穿隧電流..................................10
     3-2-1 調控一階系統偏壓.........................................10
     3-2-2 調控一階系統閘極電位.....................................14
  3-3 非對稱穿隧率....................................................17
     3-3-1 殼層填充.................................................17
     3-3-2 殼層穿隧.................................................21
第四章 二階系統……………………………………………….…24
  4-1 二階系統格林函數................................................24
  4-2 二階系統的電子佔據率與穿隧電流..................................26
     4-2-1 調控二階系統偏壓.........................................26
     4-2-2 調控二階系統閘極電位.....................................28
  4-3 非對稱穿隧率對二階系統的影響....................................30
     4-3-1 殼層填充對二階系統之影響.................................30
     4-3-2 殼層穿隧對二階系統之影響.................................34
  4-4 溫度對二階系統偏壓的影響........................................38
第五章 負微分電導....................................40
第六章 結論..........................................46
參考文獻..............................................47
[1.1] M. A. Kastner, “The single-electron transistor”, Rev. Mod. Phys. 64, 849 (1992)
[1.2] M. A. Kastner, “The single electron transistor and artificial atoms”, Ann. Phys. 9, 885(2000)
[1.3] D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions”, Low Temp. Phys. 62, 345 (1986)
[1.4] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions”, Phys. Rev. Lett. 59, 109 (1987)
[1.5] J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A.
Antoniadis, “Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas”, Phys. Rev. Lett. 62, 583 (1989).
[2.1] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[2.2] Y. Meir, N.S. Wingreen and P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)
[2.3] L.V. Keldysh: Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov.Phys. JETP 20 (1965) 1018].
[2.4] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000)
[2.5] David M.T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. (2007)
[2.6] 張銘軒,「單電子電晶體之元件特性模擬」,碩士論文,國立中央大學電機工程研究所,中壢 (2007)。
[3.1] Sophia J. Sun and Yia-Chung Chang, “Modeling self-assembled quantum dots by the effective bond-orbital method”, Phys. Rev. B, 62, 13631 (2000)
[3.2] David M.T. Kuo and P. W. Li, “Effect of Interdot Coulomb Repulsion on Charge Transport of Parallel Two Single-Electron Transistors”,JJAP (2006)
[3.3] Yukinori Ono and Yasuo Takahashi, “Observation and Circuit Application of Negative Differential Conductance in Silicon Single-Electron Transistors” (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top