跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文彥
研究生(外文):Wen-Yan Huang
論文名稱:二階向量微分系統的穩定性分析與控制
論文名稱(外文):Analysis of Stability and Stabilization for Second-Order Vector Differential Systems
指導教授:莊堯棠
指導教授(外文):Yau-Tarng Juang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:89
中文關鍵詞:二階向量微分方程式指數穩定
外文關鍵詞:second-order vector differential equationexponential stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,主要是研究有奇異矩陣領導的二階向量線性微分系統的指數穩定分析與控制,本論文用歸納範數(induced norm)、矩陣測度(matrix measure)和一些不等式的觀念,推導出了一個新的充份指數穩定條件,並且舉例說明來證實提出的定理比一些文獻的結果更不具保守性。我們以定理一的穩定條件和最佳化方法對此系統設計控制器,使系統從不穩定變穩定。
系統有適當的相位邊限(phase margin)以及增益邊限(gain margin)的話,將會使系統有良好的強健性,但對於多輸入多輸出(MIMO) 系統要使得整個系統達到所要求的規格將會是非常複雜而困難的,於是本論文就以相位邊限的規格要求(增益邊限規格可以類推適用),利用Gershgorin定理設計比例-微分控制器(Proportional-Derivative Controller)、比例-積分控制器(Proportional-Integral Controller)、以及相位領先或落後補償器(Phase Lead or Lag Compensator)。
This thesis is concerned with exponential stability analysis and design of linear systems represented by the second-order vector differential equations with singular leading coefficient matrices. A new sufficient condition for exponential stability is derived. By illustrative examples, it is shown that the proposed criterion is less conservative as compared with some results in the literature. Then, we use the developed criterion and an optimization method to design controllers to make the considered systems stable.
In control theorems, the gain margin and the phase margin are important robustness specifications for the design of practical control systems. This thesis also considers the design of time-invariant systems with the specified phase margin. The Gershgorin theorem is used to design a proportional-derivative (PD) controller, or a proportional-integral (PI) controller, or a phase lead compensator, or a lag compensator to achieve the required phase margin. Examples are also given.
List of Figures...........................................................................................................................III
List of Tables..............................................................................................................................V

Chapter 1 Introduction.............................................................................................................1
1-1 Background and the Motivation....................................................................................1
1-2 Organization of this Thesis............................................................................................3

Chapter 2 Fundamental Concept..............................................................................................4
2-1 Induced Norms...............................................................................................................4
2-2 Matrix Measures............................................................................................................6
2-3 Gain Margin and Phase Margin.....................................................................................8
2-3-1 Gain Margin.............................................................................................................8
2-3-2 Phase Margin..........................................................................................................11
2-4 Gershgorin Theorem....................................................................................................13

Chapter 3 Stability Analysis and Illustrative Examples.........................................................16
3-1 Stability Analysis.........................................................................................................16
3-2 Illustrative Examples...................................................................................................22

Chapter 4 Design of Controllers............................................................................................31
4-1 Time-domain Design...................................................................................................31
4-2 Frequency-domain Design...........................................................................................37
4-2-1 PD Controller.........................................................................................................38
4-2-2 PI Controller...........................................................................................................48
4-2-3 Phase Lead or Lag Compensator............................................................................55

Chapter 5 Conclusions...........................................................................................................63

References.................................................................................................................................64
[1] Y. Fujisaki, M. Ikeda and K. Miki, “Robust stabilization of large space structures via displacement feedback,” IEEE Trans. Auto. Contr., vol. 46, pp. 1993-1996, 2001.
[2] M. Meisami-Azad, J. Mohammadpour and K. M. Grigoriadis, “An upper bound approach for control of collocated structural systems,” American Control Conference, July 11–13, New York City, USA, pp. 4631-4636, 2007.
[3] H. Tasso and G. N. Throumoulopoulos, “On Lyapunov stability of nonautonomous mechanical systems,” Phys. Lett. A, vol. 271, pp. 413–418, 2000.
[4] H. Tasso, “On Lyapunov stability of dissipative mechanical systems,” Phys. Lett. A, vol. 257, pp.309-311, 1999.
[5] S. G. Nersesov and W. M. Haddad, “On the stability and control of nonlinear dynamical systems via vector Lyapunov functions,” IEEE Trans. Auto. Contr., vol. 51, pp. 203–215, 2006.
[6] J. Sun, Q. G. Wang and Q. C. Zhong, “A less conservative stability test for second-order linear time-varying vector differential equations,” Int. J. Contr., vol. 80, pp. 523-526, 2007.
[7] K. Inoue and T. Kato, “A stability condition for a time-varying system represented by a couple of a second- and a first-order differential equations”, 43rd IEEE Conference on Decision and Control, Dec. 14–17, Atlantis, Paradise Island, Bahamas, pp. 2934-2935, 2004.
[8] K. Inoue, S. Yamamoto, T. Ushio, and T. Hikihara, “Torque-based control of whirling motion in a rotating electric machine under mechanical resonance,” IEEE Trans. Automat. Contr., vol. 11, pp. 335-344, 2003.
[9] E. E. Zajac, “The Kelvin-Tait-Chetaev theorem and extensions,” Journal of Astronautical Sciences, vol. 11, pp. 46-49, 1964.
[10] M. I. Gil’, “Stability of linear systems governed by second order vector differential equations,” Int. J. Contr., vol. 78, pp. 534–536, 2005.
[11] K. Inoue, S. Yamamoto, T. Ushio, and T. Hikihara, “Elimination of jump phenomena in a flexible rotor system via torque control,” Control of Oscillations and Chaos, 2000. Proceedings. 2000 2nd International Conference, vol. 1, pp. 58-61, 2000.
[12] K. Nonami and T. Ito, “ synthesis of flexible rotor-magnetic bearing systems,” IEEE Trans. Contr. Systems Technology, vol. 4, pp. 503-512, 1996.
[13] Y. L. Yu, L. Daletskii and M. G. Krein, “Stability of solutions of differential equations in Banah space,” Translations of Mathematical Monographs. Providence, RI: Amer. Math. Soc., vol. 43, 1974.
[14] E. A. Barbashin, Introduction to the Theory of Stability. Groningen, The Netherlands: Wolters-Noordhoff, 1970.
[15] A. Zevin and M. Pinsky, “Exponential stability and solution bounds for systems with bounded nonlinearities,” IEEE Trans. Automat. Contr., vol. 48, pp. 1779-1804, 2003.
[16] B. C. Kuo, Automatic Control Systems. Addison-Wesley, 8th ed., 2002.
[17] G. F. Franklin, J. D. Powell, and A. E. Naeini, “Feedback control of dynamic systems”, Addison-Wesley, 3rd ed., 1994.
[18] H. W. Fung, Q. G. Wang, and T. H. Lee, “PI tuning in Terms of Gain and Phase Margins,” Automatica, vol. 34, No. 9, pp. 1145-1149, 1998.
[19] Y. J. Huang and Y. J. Wang, “Robust PID controller design for non-minimum phase time delay systems”, ISA Transactions., vol. 40, no. 1, pp. 31-39, 2001.
[20] Yang Hong and Oliver W. W. Yang, “Self-Tuning Multiloop PI Rate Controller for an MIMO AQM Router With Interval Gain Margin Assignment”, IEEE, pp. 401-405, 2005.
[21] Yang Hong and Oliver W. W. Yang, “Adaptive Multiloop PI Rate-Based Controller Design for a MIMO IP Router Based on Phase Margin”, Proceedings of IEEE Globecom, pp. 1070-1074, 2005.
[22] Robert W. Newcomb, Nonlinear System Analysis. 新月書局,台北市,民國七十六年
[23] Y. Fang and T. G. Kincaid, “Stability analysis of dynamical neural networks,” IEEE Trans. Neural Networks, vol. 7, pp. 996–1006, 1996.
[24] Ljiljana Cvetkovic, Vladimir Kostic and Richard S. Varga, “A new Gersgorin-type eigenvalue inclusion set”, Electronic Transactions on Numerical Analysis, vol.18, pp. 73-80, 2004.
[25] 林俊良,控制系統數學,修訂版,全華書局,台北市,民國九十一年。
[26] P. Lancaster, Theory of Matrices. New York: Academic Press, 1969.
[27] L. Guilbeau, “The History of the Solution of the Cubic Equation”, Mathematics News Letter, vol. 5, pp. 8-12, 1930.
[28] Pradeep B. Deshpande, Multivariable Process Control. Instrument Society of America, Research Triangle Park, NC, 1989.
[29] W.K. Ho, Y. Hong, A. Hansson, H. Hjalmarsson and J.W. Deng, “Relay Auto-Tuning of PID Controllers using Iterative Feedback Tuning” Automatica, 39, (1), January 2003, pp.149-157.
[30] J. Bao, J. F. Forbes, and P. J. McLellan, “Robust Multiloop PID Controller Design: A Successive Semidefinite Programming Approach,” Ind. Eng. Chem. Res., vol. 38, pp. 3407–3413, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top